intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

An active neutron method for measuring the inherent neutron emission of spent fuel assemsly

Chia sẻ: Năm Tháng Tĩnh Lặng | Ngày: | Loại File: PDF | Số trang:5

43
lượt xem
2
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

An active neutron method for measuring the inherent neutron emission of spent fuel assembly is proposed. The count rate of the inherent neutron emission can be determined by changing intensity of neutron irradiating source. The practical meaning of the method is presented. Some attractive features of the method are shown.

Chủ đề:
Lưu

Nội dung Text: An active neutron method for measuring the inherent neutron emission of spent fuel assemsly

Tạp chí KHOA HỌC ĐHSP TPHCM Tran Quoc Dung<br /> _____________________________________________________________________________________________________________<br /> <br /> <br /> <br /> <br /> AN ACTIVE NEUTRON METHOD FOR MEASURING<br /> THE INHERENT NEUTRON EMISSION OF SPENT FUEL ASSEMSLY<br /> <br /> TRAN QUOC DUNG*<br /> <br /> ABSTRACT<br /> An active neutron method for measuring the inherent neutron emission of spent fuel<br /> assembly is proposed. The count rate of the inherent neutron emission can be determined<br /> by changing intensity of neutron irradiating source. The practical meaning of the method<br /> is presented. Some attractive features of the method are shown.<br /> Keywords: neutron interrogation, non-destructive techniques, spent fuels, neutron<br /> measurements.<br /> TÓM TẮT<br /> Phương pháp mới sử dụng nguồn neutron để đo sự phát xạ neutron<br /> vốn có trong các bó nhiên liệu đã cháy<br /> Một phương pháp neutron chủ động để đo lượng neutron vốn có trong nhiên liệu đã<br /> cháy được đề xuất. Tốc độ đếm của sự phát xạ neutron có thể được xác định bằng cách<br /> thay đổi cường độ của nguồn chiếu neutron. Ý nghĩa thực tiễn của phương pháp được trình<br /> bày. Một số tính năng hấp dẫn của phương pháp này được chỉ ra.<br /> Từ khóa: tương tác nơ-tron, kĩ thuật không phá hủy, nhiên liệu đã cháy, các phép đo<br /> nơ-tron.<br /> <br /> 1. Introduction<br /> In nuclear material safeguards the determination of the characteristics of spent<br /> fuel assembly such as burn-up, total fissile content, amount of plutonium and original<br /> enrichment is important. These parameters are useful for establishing critical safety in<br /> spent fuel ponds and in reprocessing plants. There are some different non-destructive<br /> methods developed for fuel identification such as: acombination of active neutron<br /> interrogation and passive neutron measurement (Shulze G. and Wurz H.,1979), the<br /> spectroscope of fission product gamma radiation and passive neutron counting<br /> (Vidovszky I. et.al.,1986; Bernard P. et al.,1986), a simple passive neutron and gross<br /> gamma measurement (Phillips J.R et al.,1981), a combination of neutron and gamma<br /> measurement (Fox G.H. et al., 1987).<br /> Because neutron measurements have advantageous features such as high<br /> transparency of the assembly, easy detectability, high neutron emission of the spent<br /> fuel and favorable signal- to- background ratio. The measurement systems based on<br /> the first method have been developed and tested in actual installations (Wurz H et al.,<br /> 1990; Simon G.G, Sokcic-Costic M.,2002).<br /> <br /> *<br /> Ph.D., Centre for Nuclear Techniques<br /> <br /> 153<br /> Tư liệu tham khảo Số 43 năm 2013<br /> _____________________________________________________________________________________________________________<br /> <br /> <br /> <br /> <br /> According to the first method, the inherent neutron emission Cne is determined by<br /> passive neutron measurement and the thermal flux multiplication Mth by active neutron<br /> interrogation measurement after Cne is known. From these quantities the primary<br /> neutron emission correlating with the burn-up, the total fissile content, original<br /> enrichment of the spent fuel is obtained<br /> This paper presents an active neutron method, with changing intensity of neutron<br /> irradiating source, for measuring the inherent neutron emission Cne of spent fuel<br /> assembly.<br /> 2. The method<br /> The principle of the method is shown in Fig 1.<br /> In a given spent fuel assembly there are the inherent neutrons (Cne) emitting from<br /> spontaneous fissions and (,n) reactions. When the fuel assembly is irradiated by the<br /> neutrons of the external source the fission reactions are induced in the fissile isotopes<br /> as 235U, 239Pu, 241P. These are detected by measuring the thermalized prompt fission<br /> neutrons. Suppose that the fuel assembly is irradiated by the neutron source leaving the<br /> intensity I1, the total count rate Ct1 of detector is given as<br /> <br /> cne<br /> Neutron source Ct1<br /> with intensity I1 Cd1<br /> <br /> <br /> Ci1 Neutron<br /> detector<br /> <br /> <br /> <br /> cne<br /> Neutron source Ct2<br /> with intensity I2 Cd2<br /> <br /> <br /> Ci2 Neutron<br /> detector<br /> <br /> Fig 1. Principle of the method<br /> Ct1  Ci1  Cd1  C ne (1)<br /> Where:<br /> Ci1 - the contribution of the fission neutrons to the total count.<br /> <br /> <br /> 154<br /> Tạp chí KHOA HỌC ĐHSP TPHCM Tran Quoc Dung<br /> _____________________________________________________________________________________________________________<br /> <br /> <br /> <br /> <br /> Cd1 - the contribution of the direct source neutrons i.e., source neutron<br /> penetrating the fuel assembly without being captured<br /> Cne - the contribution of the inherent neutron emission of the spent fuel. For the<br /> given fuel assembly Cne is constant.<br /> 2<br /> Similarly, the expression of the total count rate Ct of the same detector when the<br /> fuel assembly is irradiated by neutron source having intensity I2 is given as:<br /> Ct2  Ci2  Cd2  Cne (2)<br /> 2 2 1 1<br /> The quantities Ci and Cd are similarly defined as Ci and Cd , respectively. By<br /> subtracting Cne from the total count rate, the neutron flux increase due to induced<br /> fission is obtained. The thermal neutron flux multiplication is given as:<br /> Ct1  Cne Ci1<br /> M th   1  (3)<br /> Cd1 Cd1<br /> Or<br /> Ct2  Cne Ci2<br /> M th   1  (4)<br /> Cd2 Cd2<br /> From the expressions (3) and (4) we have:<br /> Ci1 Ci2<br />  (5)<br /> Cd1 Cd2<br /> With supposing the intensity I2 is stronger than I1 and the quantity Cd2 is n times<br /> 1 2 1 2 1<br /> bigger than Cd , i.e., Cd  nCd , the expression (5) leads that Ci  nCi and<br /> <br /> Ci2  Cd2  n(Ci1  C d1 ) (6)<br /> Combining Eqs. (1), (2) and (6) result in<br /> Ct1  (Ci1  Cd1 )  Cne<br /> Ct2  n (Ci1  Cd1 )  Cne<br /> By solving this equation system, the expression for the inherent neutron emission<br /> Cne is given as<br /> nCt1  Ct2<br /> Cne  (7)<br /> n 1<br /> 2<br /> The physical nature of this method is shown in Fig.2. From eq.7 the quantity Ct ,<br /> the total count rate of the detector with intensity I2, is obtained as<br /> <br /> 155<br /> Tư liệu tham khảo Số 43 năm 2013<br /> _____________________________________________________________________________________________________________<br /> <br /> <br /> <br /> <br /> Ct2  nCt1  ( n  1)Cne (8)<br /> 2<br /> If n = 0 i.e., the neutron source is removed, so Ct  C ne . This is the very<br /> passive neutron measurement presented in [1].<br /> If n = 1, i.e., the intensity of the irradiating source is not changed. so Ct2  Ct1 .<br /> This is obvious.<br /> <br /> Ct2<br /> <br /> <br /> <br /> <br /> 2Ct1-Cne<br /> <br /> Ct1<br /> Cne<br /> <br /> <br /> <br /> 1 2 3 4 n<br /> <br /> Fig 2. The Ct2 versus the change of the intensity of the neutron source<br /> 2<br /> choosing n>1, the linear functional dependence between Ct and n is given as in Fig 2,<br /> and Cne is the very intersection point of the line and the coordinate axis.<br /> The count rate of Cd1 and Cd2 due to the direct source neutrons are determined in<br /> the laboratory [1], so n is obtained easily.<br /> 3. Conclusion<br /> The inherent neutron emission Cne and the flux multiplication Mth are two<br /> necessary quantities for spent fuel identification. The method combining active and<br /> passive neutron measurement has allowed the obtainment of these quantities.<br /> This paper presents the method determining Cne and Mth by only active neutron<br /> measurements with changing intensity of interrogating source.<br /> This method has attractive features as follows:<br /> - Calibrations for the passive neutron measurements are not necessary. Calibrations<br /> for the active measurements are simple.<br /> - The measuring instruments are not complicated or expensive.<br /> - Intensity of the interrogating source can be easily changed by readjusting the<br /> window of source.<br /> <br /> <br /> 156<br /> Tạp chí KHOA HỌC ĐHSP TPHCM Tran Quoc Dung<br /> _____________________________________________________________________________________________________________<br /> <br /> <br /> <br /> <br /> REFERENCES<br /> 1. Bernard P. et al.,(1986), “Fuel Assembly Identification in French Reprocessing<br /> Plants”, Proc.27 th Mtg, Institute of nuclear materials management, New Orleans,<br /> Louisiana, June 22-25, 1986, P.653<br /> 2. Fox G.H. et al., (1987), “The Development of Radiometric Instrumentation in<br /> Support of Sellafield Projects”, Proc.Int. Conf. Nuclear Fuel Reprocessing and<br /> Waste Management, Paris, France, August, 23-27, 1987. Vol.3, P-1015.<br /> 3. Phillips J.R et al., (1981), “Neutron Measurement Technique for Nondestructive<br /> Analysis of Irradiated Fuel Assemblies”, LA.9002-MS, Los Alamos National<br /> Laboratory.<br /> 4. Simon G.G, Sokcic-Costic M., (2002), “Famos III, burn-up measurement system<br /> suitble for La Hague acceptance criteria control”, Nuclear Technology & Radiation<br /> Protection 1-2/2002.<br /> 5. Shulze G. and Wurz H., (1979), “Nondestructive Assay of spent fuel Assemblies”,<br /> Proc.Int. Monitoring of Pu- Contaminated waste, Ispra, Italy.Sept 25-28, 1979, EUR<br /> 6629 EN 1979, p.247, commission of the European communities.<br /> 6. Vidovszky I. et.al., (1986), “Non-destructive fuel burn-up study on WWR-SRA type<br /> fuel assemblies (Gamma spectrometric method)”, KFKI-1986-76/G, Budapest,<br /> Hungary.<br /> 7. Wurz H et al., (1990), A Nondestructive Method for Light Water Reactor Fuel<br /> Identification, Nuclear Technology, 90, 191.<br /> <br /> (Received: 10/9/2012; Revised: 22/01/2013; Accepted: 18/02/2013)<br /> <br /> <br /> TỔNG HỢP MỘT SỐ DẪN XUẤT …<br /> (Tiếp theo trang 13)<br /> <br /> 7. Sandhya B, Vinor Mathew, Lohitha P, Ashwini T and Shravani A - Acharya and B.<br /> M. Reddy (2001), “Synthesis, Characterization and Pharmacological Activities of<br /> Coumarin derivatives”, International Journal of Chemical and Pharmaceutical<br /> Sciences, Vol.1, pp. 16-25.<br /> 8. Sushil Kumar, Prateek Pandey, Yogita Srivastava, Asheesh Kumar (2011),<br /> “Synthesis, computational studies and pharmacological evaluation of some<br /> acetamides as serotonin antagonists”, Der Pharma Chemica, Vol. 3 (4), pp.195-200.<br /> 9. www.beilstein-journals.org/.../1860-5397-8-35-S1.pdf<br /> <br /> (Ngày Tòa soạn nhận được bài: 06-9-2012; ngày phản biện đánh giá: 06-12-2012;<br /> ngày chấp nhận đăng: 18-02-2013)<br /> <br /> <br /> <br /> <br /> 157<br />
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2