Bài giảng Lý thuyết đồ thị: Chương 4 - Nguyễn Trần Phi Phượng
lượt xem 4
download
Download
Vui lòng tải xuống để xem tài liệu đầy đủ
Bài giảng Lý thuyết đồ thị: Chương 4 - Đồ thị Euler và đồ thị Halmiton do Nguyễn Trần Phi Phương thực hiện giới thiệu tới các bạn những nội dung về đồ thị Euler; đồ thị Hamilton. Bài giảng phục vụ cho các bạn chuyên ngành Toán học và những bạn quan tâm tới lĩnh vực này.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Bài giảng Lý thuyết đồ thị: Chương 4 - Nguyễn Trần Phi Phượng
- Chương 4 ĐỒ THỊ EULER và ĐỒ THỊ HALMITON
- 4.1 Đồ thị Euler Định nghĩa Xét đồ thị G = (V,E) – Đường đi đơn trong G được gọi là đường đi Euler nếu nó đi qua tất cả các cạnh, mỗi cạnh một lần. – Chu trình đơn trong G được gọi là chu trình Euler nếu nó đi qua tất cả các cạnh, mỗi cạnh một lần. – Đồ thị G được gọi là đồ thị Euler nếu có chu trình Euler. – Đồ thị G được gọi là đồ thị nửa Euler nếu có đường đi Euler. 26/03/2011 Lý thuyết đồ thị 2
- 4.1 Đồ thị Euler 3 Ví dụ: Đồ thị G1có các đường đi Euler là: 2 4 G1 d1: 1 2 3 4 2 5 4 1 5 1 5 d2: 1 2 4 3 2 5 1 4 5 Đồ thị nửa Euler … 3 Đồ thị G2 có các chu trình Euler là: 2 4 C1: 1 2 3 4 2 5 4 1 5 6 1 G2 C2: 1 2 4 3 2 5 1 4 5 6 1 1 5 … Đồ thị Euler 6 26/03/2011 Lý thuyết đồ thị 3
- 4.1 Đồ thị Euler Định lý 1 Đồ thị vô hướng liên thông G là đồ thị Euler khi và chỉ khi mọi đỉnh của G đều có bậc chẵn. Hệ quả Đồ thị vô hướng liên thông G là đồ thị nửa Euler khi và chỉ khi nó có không quá 2 đỉnh bậc lẻ. 26/03/2011 Lý thuyết đồ thị 4
- 4.1 Đồ thị Euler Thuật toán Fleury xác định chu trình Euler Xuất phát từ một đỉnh bất kỳ của G, đi theo các cạnh một cách tùy ý, chỉ cần tuân thủ hai quy tắc sau: i) Xóa bỏ cạnh đã đi qua và đồng thời xóa cả những đỉnh cô lập tạo thành. ii) Ở mỗi bước, chỉ đi qua cầu khi không còn cách chọn lựa nào khác. a b c d Ví dụ: Tìm chu trình ở Euler trong đồ thị h g f e 26/03/2011 Lý thuyết đồ thị 5
- 4.1 Đồ thị Euler Định lý 2 Đồ thị có hướng liên thông mạnh là đồ thị Euler khi và chỉ khi deg+(v) = deg-(v), ∀v∈V 26/03/2011 Lý thuyết đồ thị 6
- 4.2 Đồ thị Hamilton Định nghĩa Xét đồ thị G = (V,E) – Đường đi trên G được gọi là đường đi Hamilton nếu nó đi qua tất cả các đỉnh, mỗi đỉnh một lần. – Chu trình trên G được gọi là chu trình Hamilton nếu nó đi qua tất cả các đỉnh, mỗi đỉnh một lần. – Đồ thị G được gọi là đồ thị Hamilton nếu có chu trình Hamilton. – Đồ thị G được gọi là đồ thị nửa Hamilton nếu có đường đi Hamilton. 26/03/2011 Lý thuyết đồ thị 7
- 4.2 Đồ thị Hamilton 3 Ví dụ: Đồ thị G1có các đường đi Hamilton là: 2 4 G1 d1: 3 4 2 5 1 d2: 3 4 5 1 2 1 5 Đồ thị nửa Hamilton … 3 Đồ thị G2 có các chu trình Hamilton là: 2 4 C1: 1 2 3 4 5 6 1 G2 C2: 1 6 5 2 3 4 1 1 5 … Đồ thị Hamilton 6 26/03/2011 Lý thuyết đồ thị 8
- 4.2 Đồ thị Hamilton Định lý 3 (Dirak 1952) Đơn đồ thị vô hướng G với n đỉnh (n > 2), mỗi đỉnh có bậc không nhỏ hơn n/2 là đồ thị Hamilton. Định lý 4 Đồ thị có hướng liên thông mạnh G với n đỉnh. Nếu deg+(v) ≥ n/2, deg-(v) ≥ n/2, ∀v thì G là đồ thị Hamilton. 26/03/2011 Lý thuyết đồ thị 9
- 4.2 Đồ thị Hamilton Đồ thị đấu loại là đồ thị có hướng mà trong đó hai đỉnh bất kỳ của nó được nối với nhau bởi đúng một cung. Định lý 5 i) Mọi đồ thị đấu loại là nửa Hamilton. ii) Mọi đồ thị đấu loại liên thông mạnh là Hamilton 26/03/2011 Lý thuyết đồ thị 10
- 4.2 Đồ thị Hamilton Định lý 6 (Ore, 1960) Cho đồ thị G có n đỉnh. Nếu deg(i)+deg(j)≥ n≥3 với i và j là hai đỉnh không kề nhau tùy ý thì G là Hamilton. 26/03/2011 Lý thuyết đồ thị 11
- 4.2 Đồ thị Hamilton Quy tắc để xây dựng một chu trình Hamilton (H) Quy tắc 1. Tất cả các cạnh kề với đỉnh bậc 2 phải ở trong H Quy tắc 2. Không có chu trình con (chu trình có chiều dài
- 4.2 Đồ thị Hamilton Ví dụ Đồ thị sau có là đồ thị Hamilton không? 1 2 3 Giả sử G có chu trình Hamilton H. Theo quy tắc 1, 4 5 6 tất cả các cạnh kề với đỉnh bậc 2 đều ở trong H: 12, 14, 7 8 9 23, 36, 47, 78, 69, 89. Ta có chu trình con là 1, 2, 3, 6, 9, 8, 7, 4, 1. Vậy G không là đồ thị Hamilton. 26/03/2011 Lý thuyết đồ thị 13
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Bài giảng Lý thuyết đồ thị: Chương 4 - Đồ thị phẳng – Bài toán tô màu đồ thị
21 p |
226
|
28
-
Bài giảng Lý thuyết đồ thị: Chương 1 - ThS. Nguyễn Khắc Quốc
56 p |
151
|
18
-
Bài giảng Lý thuyết đồ thị: Chương 3 - Đồ thị Euler và đồ thị Hamilton
19 p |
162
|
16
-
Bài giảng Lý thuyết đồ thị: Chương 2 - Biểu diễn đồ thị trên máy tính
32 p |
130
|
16
-
Bài giảng Lý thuyết đồ thị: Chương 4 - ThS. Nguyễn Khắc Quốc
36 p |
134
|
14
-
Bài giảng Lý thuyết đồ thị: Chương 1 - Đại cương về đồ thị
39 p |
115
|
13
-
Bài giảng Lý thuyết đồ thị: Chương 3 - ThS. Nguyễn Khắc Quốc
67 p |
126
|
13
-
Bài giảng Lý thuyết đồ thị: Chương 5 - Cây và cây khung của đồ thị
37 p |
212
|
12
-
Bài giảng Lý thuyết đồ thị: Chương 2 - ThS. Nguyễn Khắc Quốc
37 p |
127
|
12
-
Bài giảng Lý thuyết đồ thị: Chương 5 - ThS. Nguyễn Khắc Quốc
55 p |
122
|
8
-
Bài giảng Lý thuyết đồ thị: Chương 0 - Giới thiệu môn học
12 p |
114
|
7
-
Bài giảng Lý thuyết đồ thị: Chương 1 - Nguyễn Trần Phi Phượng
26 p |
203
|
7
-
Bài giảng Lý thuyết đồ thị - Học viện Kỹ thuật Quân sự
107 p |
96
|
7
-
Bài giảng Lý thuyết đồ thị: Bài toán ghép cặp
43 p |
186
|
6
-
Bài giảng Lý thuyết đồ thị: Chương 6 - Nguyễn Trần Phi Phượng
38 p |
94
|
5
-
Bài giảng Lý thuyết đồ thị: Chương 0 - Nguyễn Trần Phi Phượng
6 p |
102
|
4
-
Bài giảng Lý thuyết đồ thị: Chương 0 - Tôn Quang Toại
6 p |
38
|
4
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn
