YOMEDIA
ADSENSE
Bài tập toán cao cấp 2 - Ma trận nghịch đảo và phương trình ma trận
925
lượt xem 96
download
lượt xem 96
download
Download
Vui lòng tải xuống để xem tài liệu đầy đủ
Tham khảo tài liệu 'bài tập toán cao cấp 2 - ma trận nghịch đảo và phương trình ma trận', khoa học tự nhiên, toán học phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
AMBIENT/
Chủ đề:
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Bài tập toán cao cấp 2 - Ma trận nghịch đảo và phương trình ma trận
- LỜI GIẢI MỘT SỐ BÀI TẬP TOÁN CAO CẤP 2 Lời giải một số bài tập trong tài liệu này dùng để tham khảo. Có một số bài tập do một số sinh viên giải. Khi học, sinh viên cần lựa chọn những phương pháp phù hợp và đơn giản hơn. Chúc anh chị em sinh viên học tập tốt BÀI TẬP VỀ MA TRẬN NGHỊCH ĐẢO VÀ PHƯƠNG TRÌNH MA TRẬN Bài 1: Tìm ma trận nghịch đảo của các ma trân sau: 1) A 3 4 5 7 Ta có: 1 5 3 4 1 0 h1 3 3 4 1 0 h1 h2 4 1 3 h23 1 0 AI 0 1 5 1 5 7 0 1 3 3 3 3 0 1 5 3 4 h2 h1 1 0 7 4 A1 7 4 3 0 1 5 3 5 3
- 2) A 1 2 4 9 Ta có: 1 1 1 2 1 d b 1 9 2 9 2 A 1.(9) (2).4 4 9 ad bc c a 4 1 4 1 3 4 5 3) A 2 3 1 3 5 1 Ta có: 3 4 5 1 0 0 1 1 4 1 1 0 A I 2 3 1 0 1 0 2 3 1 0 1 0 h2(-1) h1 3 5 1 0 0 1 3 5 1 0 0 1 1 1 4 1 1 0 1 1 4 1 1 0 h2(-2) h3 h13h3 0 1 7 2 3 0 0 1 7 2 3 0 h1 2 h2 0 2 13 3 3 1 0 0 1 1 3 1 1 1 4 1 1 0 1 1 0 3 11 4 0 1 7 2 3 0 h34h1 0 1 0 5 18 7 h2(-1) h3 7 h2 0 0 1 1 3 1 0 0 1 1 3 1 1 0 0 8 29 11 h2h1 0 1 0 5 18 7 0 0 1 1 3 1 8 29 11 Vậy ma trận A là ma trận khả nghịch và A-1 = 5 18 7 1 3 1
- 2 7 3 4) A 3 9 4 1 5 3 Ta có: 2 7 3 1 0 0 1 5 3 0 0 1 A I 3 9 4 0 1 0 3 9 4 0 1 0 h3h1 1 5 3 0 0 1 2 7 3 1 0 0 1 5 3 0 0 1 h13h2 1 5 3 0 0 1 h12h3 h3h2 0 6 5 0 1 3 0 3 3 1 0 2 0 3 3 1 0 2 0 6 5 0 1 3 1 5 3 0 0 1 h2 1 1 5 3 0 0 1 3 1 2 h2(-2)h3 0 3 3 1 0 2 0 1 1 0 3 3 0 0 1 2 1 1 0 0 1 2 1 1 7 1 1 5 0 6 3 2 1 0 0 2 3 3 h31 h2 h33h1 0 1 0 5 1 1 0 1 0 5 1 1 h2(-5)h1 3 3 3 3 0 0 1 2 1 1 0 0 1 2 1 1 7 1 2 3 3 5 1 A1 1 3 3 2 1 1
- 1 2 2 5) A 2 1 2 2 2 1 Ta có: 1 2 2 1 0 0 h1 2 h 2 1 2 2 1 0 0 h1 2 h 3 A 2 1 2 0 1 0 0 3 6 2 1 0 2 2 1 0 0 1 0 6 3 2 0 1 1 1 2 2 h 2 3 1 0 0 1 2 2 1 0 0 1 h 3 2 1 0 3 6 2 1 0 0 1 2 0 h 2 2 h 3 9 3 3 0 0 9 2 2 1 2 2 1 0 0 1 9 9 9 5 4 2 1 2 2 1 2 0 1 0 0 9 9 9 9 9 9 h 3 2 h 2 2 1 2 h 2 2 h1 2 1 2 0 1 0 h 3 2 h1 0 1 0 9 9 9 9 9 9 0 0 1 2 2 1 0 0 1 2 2 1 9 9 9 9 9 9 1 2 2 9 9 9 2 1 2 A 1 9 9 9 2 2 1 9 9 9
- Bài 2 Giải các phương trình ma trận sau 1 2 3 5 1) X 5 9 3 4 1 2 3 5 Đặt A ;B 5 9 3 4 Ta có: AX B X A1 B 1 2 1 1 1 2 1 d b 1 4 2 A 3 1 3 4 ad bc c a 1.4 2.3 3 1 2 2 2 1 3 5 1 1 X 3 1 5 9 2 3 2 2 3 2 1 2 2) X 5 4 5 6 3 2 1 2 Đặt A ; B 5 6 5 4 Ta có: XA B X BA1 1 2 1 1 3 2 1 d b 1 4 2 A 5 3 5 4 ad bc c a 3.(4) 5.(2) 5 3 2 2 2 1 1 2 3 2 X 5 3 5 6 5 4 2 2
- 1 2 3 1 3 0 3 2 4 X 10 2 7 3) 2 1 0 10 7 8 Giải: 1 2 3 1 3 0 3 2 4 ; B 10 2 7 Đặt A 2 1 0 10 7 8 Ta có: AX B X A1 B 4 3 2 Bằng phương pháp tìm ma trận nghịch đảo ta có: A 8 6 5 1 7 5 4 4 3 2 1 3 0 6 4 5 Suy ra: X 8 6 5 10 2 7 2 1 2 7 5 4 10 7 8 3 3 3 5 3 1 8 3 0 4) X 1 3 2 5 9 0 5 2 1 2 15 0 5 3 1 8 3 0 1 3 2 ; B 5 9 0 Đặt A 5 2 1 2 15 0 Ta có: XA B X BA1 Bằng phương pháp tìm ma trận nghịch đảo ta có:
- 1 1 3 19 19 19 1 A 9 10 11 19 19 19 13 25 18 19 19 19 Suy ra: 1 1 3 19 19 19 8 3 0 1 2 3 1 9 10 11 X BA A 5 9 0 4 5 6 19 19 19 2 15 0 7 8 9 13 25 18 19 19 19 3 1 5 6 14 16 5) X 5 2 7 8 9 10 3 1 5 6 14 16 Đặt A ; B 7 8 ; C 9 10 5 2 Ta có: AXB C X A1CB 1 1 1 3 1 2 1 A 5 2 5 3 1 4 3 1 5 6 B 7 5 7 8 2 2 Suy ra: 4 3 4 3 2 1 14 16 19 22 1 2 X 7 5 7 5 5 3 9 10 43 50 3 4 2 2 2 2
ADSENSE
CÓ THỂ BẠN MUỐN DOWNLOAD
Thêm tài liệu vào bộ sưu tập có sẵn:
Báo xấu
LAVA
ERROR:connection to 10.20.1.100:9315 failed (errno=111, msg=Connection refused)
ERROR:connection to 10.20.1.100:9315 failed (errno=111, msg=Connection refused)
AANETWORK
TRỢ GIÚP
HỖ TRỢ KHÁCH HÀNG
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn
