intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Báo cáo thí nghiệm Lý thuyết điều khiển tự động 1

Chia sẻ: Tạ Duy Lâm | Ngày: | Loại File: DOC | Số trang:23

429
lượt xem
130
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tham khảo bài viết 'báo cáo thí nghiệm lý thuyết điều khiển tự động 1', kỹ thuật - công nghệ, điện - điện tử phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả

Chủ đề:
Lưu

Nội dung Text: Báo cáo thí nghiệm Lý thuyết điều khiển tự động 1

  1. III.1.a. w=tf(20,[1 0]) Transfer function: 20 -- s >> ltiview({'step','impulse','bode','nyquist'},w) 30 21 20.5 20 20 10 19.5 0 19 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 40 10 Phase (deg) Magnitude (dB) 20 5 0 0 -89 -90 -5 -91 -10 0 1 -1 -0.5 0 0.5 10 10
  2. III.1.b. >> w=tf([20 0],[0.1 1]) Transfer function: 20 s --------- 0.1 s + 1 >> ltiview({'step','impulse','bode','nyquist'},w) 200 0 150 -500 100 -1000 50 -1500 0 -2000 0 0.2 0.4 0.6 0 0.2 0.4 0.6 50 100 Phase (deg) Magnitude (dB) 0 50 -50 0 90 45 -50 0 -100 0 2 -50 0 50 100 150 200 10 10
  3. III.1.c TH1 w=tf(20,[50 1]) Transfer function: 20 -------- 50 s + 1 >> ltiview({'step','impulse','bode','nyquist'},w) 20 0.4 15 0.3 10 0.2 5 0.1 0 0 0 100 200 300 0 100 200 300 50 10 Phase (deg) Magnitude (dB) 0 5 -50 0 0 -45 -5 -90 -10 -3 -2 -1 0 -5 0 5 10 15 20 10 10 10 10
  4. TH2 w=tf(20,[100 1]) Transfer function: 20 --------- 100 s + 1 >> ltiview({'step','impulse','bode','nyquist'},w) 20 0.2 15 0.15 10 0.1 5 0.05 0 0 0 200 400 600 0 200 400 600 50 10 Phase (deg) Magnitude (dB) 0 5 -50 0 0 -45 -5 -90 -10 -4 -2 0 -5 0 5 10 15 20 10 10 10
  5. III.2. >> G1=tf([1 1],conv([1 3],[1 5])) Transfer function: s+1 -------------- s^2 + 8 s + 15 >> G2=tf([1 0],[1 2 8]) Transfer function: s ------------- s^2 + 2 s + 8 >> G3=tf(1,[1 0]) Transfer function: 1 - s >> H1=tf(1,[1 2]) Transfer function: 1 ----- s+2 >> G13=G1+G3 Transfer function: 2 s^2 + 9 s + 15 ------------------ s^3 + 8 s^2 + 15 s >> G21=feedback(G2,H1) Transfer function: s^2 + 2 s ----------------------- s^3 + 4 s^2 + 13 s + 16 >> G=G13*G21 Transfer function: 2 s^4 + 13 s^3 + 33 s^2 + 30 s ------------------------------------------------- s^6 + 12 s^5 + 60 s^4 + 180 s^3 + 323 s^2 + 240 s
  6. >> Gk=feedback(G,1) Transfer function: 2 s^4 + 13 s^3 + 33 s^2 + 30 s ------------------------------------------------- s^6 + 12 s^5 + 62 s^4 + 193 s^3 + 356 s^2 + 270 s >> ltiview({'step','impulse'},Gk) 0.2 0.15 0.1 0.05 0 0 1 2 3 4 5 6 7 8 9 0.3 0.2 0.1 0 -0.1 0 1 2 3 4 5 6 7 8 9
  7. >> Gh=G*1 Transfer function: 2 s^4 + 13 s^3 + 33 s^2 + 30 s ------------------------------------------------- s^6 + 12 s^5 + 60 s^4 + 180 s^3 + 323 s^2 + 240 s >> ltiview({'bode','nyquist'},Gk)\ 0 Phase (deg) Magnitude (dB) -50 -100 0 -90 -180 -1 0 1 2 10 10 10 10 0.2 0 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25
  8. III.3.a. >> G1=tf(8,[1 2]) Transfer function: 8 ----- s+2 >> G2=tf(1,conv([0.5 1],[1 1])) Transfer function: 1 ------------------- 0.5 s^2 + 1.5 s + 1 >> H=tf(1,[0.005 1]) Transfer function: 1 ----------- 0.005 s + 1 >> G=feedback(G1*G2,H) Transfer function: 0.04 s + 8 ------------------------------------------------ 0.0025 s^4 + 0.5125 s^3 + 2.52 s^2 + 4.01 s + 10
  9. >> Gk=feedback(G,1) Transfer function: 0.04 s + 8 ------------------------------------------------ 0.0025 s^4 + 0.5125 s^3 + 2.52 s^2 + 4.05 s + 18 >> ltiview({'step','impulse'},Gk) 1 0.8 0.6 0.4 0.2 0 0 10 20 30 40 50 60 70 80 90 100 2 1 0 -1 0 10 20 30 40 50 60 70 80 90 100
  10. >> Gh=G*1 Transfer function: 0.04 s + 8 ------------------------------------------------ 0.0025 s^4 + 0.5125 s^3 + 2.52 s^2 + 4.01 s + 10 >> ltiview({'bode','nyquist'},Gh) 200 Phase (deg) Magnitude (dB) 0 -200 0 -180 -360 -1 0 1 2 3 10 10 10 10 10 4 2 0 -2 -4 -1.5 -1 -0.5 0 0.5 1
  11. III.3.b. >> G1=tf(20,[1 2]) Transfer function: 20 ----- s+2 >> G2=tf(1,conv([0.5 1],[1 1])) Transfer function: 1 ------------------- 0.5 s^2 + 1.5 s + 1 >> H=tf(1,[0.005 1]) Transfer function: 1 ----------- 0.005 s + 1 >> G=feedback(G1*G2,H) Transfer function: 0.1 s + 20 ------------------------------------------------ 0.0025 s^4 + 0.5125 s^3 + 2.52 s^2 + 4.01 s + 22
  12. >> Gk=feedback(G,1) Transfer function: 0.1 s + 20 ------------------------------------------------ 0.0025 s^4 + 0.5125 s^3 + 2.52 s^2 + 4.11 s + 42 >> ltiview({'step','impulse'},Gk) 5 0 -5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 20 10 0 -10 -20 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
  13. >> Gh=G*1 Transfer function: 0.1 s + 20 ------------------------------------------------ 0.0025 s^4 + 0.5125 s^3 + 2.52 s^2 + 4.01 s + 22 >> ltiview({'bode','nyquist'},Gh) 200 Phase (deg) Magnitude (dB) 0 -200 -180 -270 -360 -450 -1 0 1 2 3 10 10 10 10 10 20 10 0 -10 -20 -4 -2 0 2 4 6 8 10 12 14
  14. III.3.c >> G1=tf(17.564411,[1 2]) Transfer function: 17.56 ----- s+2 >> G2=tf(1,conv([0.5 1],[1 1])) Transfer function: 1 ------------------- 0.5 s^2 + 1.5 s + 1 >> H=tf(1,[0.005 1]) Transfer function: 1 ----------- 0.005 s + 1 >> G=feedback(G1*G2,H) Transfer function: 0.08782 s + 17.56 --------------------------------------------------- 0.0025 s^4 + 0.5125 s^3 + 2.52 s^2 + 4.01 s + 19.56
  15. >> Gk=feedback(G,1) Transfer function: 0.08782 s + 17.56 ---------------------------------------------------- 0.0025 s^4 + 0.5125 s^3 + 2.52 s^2 + 4.098 s + 37.13 >> ltiview({'step','impulse'},Gk) 4 2 0 -2 -4 0 1 2 3 4 5 6 20 10 0 -10 -20 0 1 2 3 4 5 6
  16. >> Gh=G*1 Transfer function: 0.08782 s + 17.56 --------------------------------------------------- 0.0025 s^4 + 0.5125 s^3 + 2.52 s^2 + 4.01 s + 19.56 >> ltiview({'bode','nyquist'},Gh) 200 Phase (deg) Magnitude (dB) 0 -200 -180 -270 -360 -450 -1 0 1 2 3 10 10 10 10 10 8 x 10 2 1 0 -1 -2 -2 -1 0 1 2 3 4 5 6 7 x 10
  17. III.4. >> num=[2] num = 2 >> den=[0.04 0.54 1.5 3] den = 0.0400 0.5400 1.5000 3.0000 >> [A,B,C,D]=tf2ss(num,den) A = -13.5000 -37.5000 -75.0000 1.0000 0 0 0 1.0000 0 B= 1 0 0 C= 0 0 50 D= 0 >> step(A,B,C,D) Step Response 0.8 0.7 0.6 0.5 Amplitude 0.4 0.3 0.2 0.1 0 0 0.5 1 1.5 2 2.5 3 3.5 4 Time (sec)
  18. >> impulse(A,B,C,D) Impulse Response 1.2 1 0.8 0.6 Amplitude 0.4 0.2 0 -0.2 0 0.5 1 1.5 2 2.5 3 3.5 4 Time (sec) >> nyquist(A,B,C,D) Nyquist Diagram 1 0.8 0.6 0.4 0.2 Imaginary Axis 0 -0.2 -0.4 -0.6 -0.8 -1 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 Real Axis
  19. >> bode(A,B,C,D) Bode Diagram 0 Magnitude (dB) -50 -100 -150 0 -90 Phase (deg) -180 -270 -1 0 1 2 3 10 10 10 10 10 Frequency (rad/sec)
  20. III.1.d >> w=tf(20,[100 0 1]) Transfer function: 20 ----------- 100 s^2 + 1 >> step(w) >> hold on >> w=tf(20,[100 5 1]) Transfer function: 20 ----------------- 100 s^2 + 5 s + 1 >> step(w) >> w=tf(20,[100 10 1]) Transfer function: 20 ------------------ 100 s^2 + 10 s + 1 Step Response 40 >> step(w) >> w=tf(20,[100 15 1]) 35 Transfer function: 30 20 ------------------ 25 100 s^2 + 15 s + 1 Amplitude 20 >> step(w) 15 >> w=tf(20,[100 20 1]) 10 Transfer function: 20 ------------------ 5 100 s^2 + 20 s + 1 0 0 50 100 150 200 250 >> step(w) Time (sec) >> hold off
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2