
Các bài toán sử dụng chiều biến thiên (Bài tập và hướng dẫn giải)
lượt xem 50
download

Tham khảo tài liệu 'các bài toán sử dụng chiều biến thiên (bài tập và hướng dẫn giải)', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Các bài toán sử dụng chiều biến thiên (Bài tập và hướng dẫn giải)
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 BTVN NGÀY 17-03 Sử dụng chiều biến thiên. Bài 1: Tìm Min, Max của: xy 2 A= (x 2 ( + 3 y 2 ) x + x 2 + 12 y 2 ) Bài 2: Cho 3 số thực thõa mãn: x2 + y2 + z2 =1. Tìm Min, Max của: P = ( x + y + z ) − ( xy + yz + zx) Bài 3: Cho 2 số dương x,y thõa mãn: x+y=5/4. Tìm Min của: 4 1 A= + x 4y Bài 4: CMR: Với mọi tam giác ABC ta luôn có: A A A 1 + cos 1 + cos 1 + cos 2+ 2+ 2 >3 3 A A A Bài 5: Cho 2 số không âm tùy ý x,y thõa mãn x+y=1: Tìm Min, Max của: x y S= + y +1 x +1 ………………….Hết………………… BT Viên môn Toán hocmai.vn Trịnh Hào Quang
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 HDG BTVN NGÀY 15-03 Bất đẳng thức Côsi. Bài 1: Cho 3 số dương tùy ý x,y,z. x x x 3 CMR: + + ≤ 2x + y + z 2x + y + z 2x + y + z 4 Giải: Ta có: 1 1 1 1 1 = ≤ + 2x + y + z ( x + y ) + ( x + z ) 4 x + y x + z x 1 x x ≤ + 2x + y + z 4 x + y x + z y 1 y y 1 x+ y y+ z x+ z 3 ⇒ ≤ + ⇒ VT ≤ + + = x + 2y + z 4 x + y y + z 4 x+ y y+ z x+ z 4 z 1 z z =≤ + x + y + 2z 4 x + z y + z Dấu “=” xảy ra khi và chỉ khi x=y=z Bài 2: Cho 3 số dương x,y,z thõa mãn: xyz=1 x2 y2 z2 3 CMR: + + ≥ 1+ y 1+ z 1+ x 2 Giải: Ta có:
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 x2 1 + y + ≥ x 1+ y 4 y 2 1+ z 3 + ( x + y + z ) 3( x + y + z ) − 3 9 3 xyz − 3 3 + ≥ y ⇒ VT ≥ ( x + y + z ) − = ≥ = 1+ z 4 4 4 4 2 z 2 1+ x + ≥z 1+ x 4 Dấu “=” xảy ra khi và chỉ khi x=y=z=1 Bài 3: Cho 3 số không âm tùy ý x,y,z thõa mãn: x+y+z=0. CMR: 2 + 4x + 2 + 4 y + 2 + 4z ≥ 3 3 Giải: Đặt: a = 4 x a, b, c > 0 b = 4y ⇒ Và : 2 + a + 2 + b + 2 + c ≥ 3 3 (1) c = 4 z abc = 1 1 1 1 1 Ta có : 2 + a = 1 + 1 + a ≥ 3 a ⇒ 2 + a ≥ 3.a ⇒ VT(1) ≥ 3. a + b + c 6 3 6 6 6 1 ≥ 3 3. ( abc ) 18 = 3 3 Dấu “=” xảy ra khi và chỉ khi x=y=z=0 Bài 4: Cho 3 số dương tùy ý a,b,c: a b c Tìm Min: A = 3 4(a + b ) + 3 4(b + c ) + 3 4(c + a ) + 2 + 2+ 2 3 3 3 3 3 3 2 b c a Giải:
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 a b c A = 3 4(a 3 + b3 ) + 3 4(b3 + c3 ) + 3 4(c3 + a 3 ) + 2 2 + 2 + 2 b c a Vì :4(a 3 + b3 ) ≥ 8 (ab)3 ⇒ 3 4(a 3 + b3 ) ≥ 2 ab ⇒ 3 4(a 3 + b3 ) + 3 4(b3 + c3 ) + 3 4(c3 + a 3 ) ≥ 2 ( ) ab + bc + ca ≥ 6 3 abc a b c 1 1 Và 2 2 + 2 + 2 ≥ 6 3 ⇒ A ≥ 6 3 abc + 3 ≥ 12 ⇒ Min A = 12 b c a abc abc Dấu “=” xảy ra khi và chỉ khi a=b=c=1. Bài 5: Cho 3 số dương tùy ý x,y,z. x 1 y 1 z 1 Tìm Min của: P = x + + y + + z + 2 yz 2 zx 2 xy Giải: Ta có: x2 + y 2 + z 2 x2 y2 z2 x2 + y2 + z 2 x2 + y2 + z 2 1 1 P= + + + = + = ( x2 + y 2 + z 2 ) + 2 xyz xyz xyz 2 xyz 2 xyz 1 1 1 1 1 3 1 Vì : x 2 + y 2 + z 2 ≥ 3 3 ( xyz ) 2 Và + = 1 + + ≥ .3 2 xyz 2 xyz xyz 2 ( xyz ) 2 3 1 9 9 ⇒ P ≥ 3 3 ( xyz ) 2 . . = ⇒ MinP = 2 3 ( xyz ) 2 2 2 Dấu “=” xảy ra khi và chỉ khi x=y=z=1 BTVN NGÀY 17-03 Sử dụng chiều biến thiên.
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 Bài 1: Tìm Min, Max của: xy 2 A= (x 2 ( + 3 y 2 ) x + x 2 + 12 y 2 ) Giải: 1 y Ta có : A = . Coi : t = x 2 2 x + 3 1 + 1 + 12 y y x ⇒ A= 1 = t 2 = ( t 2 1 − 1 + 12t 2 ) 1 ( 2 + 3 1 + 1 + 12t t 2 ) ( 1 + 3t ) ( 1 + 2 1 + 12t 2 ) ( 1 + 3t ) ( −12t ) 2 2 1 1 + 12t 2 − 1 u −1 = . Coi : u = 1 + 12t 2 (u ≥ 1) ⇒ 3 A = 2 = f (u ) 3 12t + 4 2 u +3 u = −1 1 1 ⇒ f '(u ) = 0 ⇔ ⇒ 3 A = f (u ) ≤ f (3) = ⇒ MaxA = . u = 3 6 18 Và : lim f (u ) = 0 ⇒ MinA = 0 u →∞ Bài 2: Cho 3 số thực thõa mãn: x2 + y2 + z2 =1. Tìm Min, Max của: P = ( x + y + z ) − ( xy + yz + zx) Giải: Đặt:
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 t = x + y + z ⇒ t 2 ≤ 3( x 2 + y 2 + z 2 ) = 3 ⇒ t ∈ − 3; 3 t 2 − 1 −t 2 + 2t + 1 Và P = t − = = f (t ) ⇒ f '(t ) = 0 ⇔ t = 1 ∈ − 3; 3 2 2 MaxP = f (1) = 1 Qua BBT ta có : MinP = f (− 3) = −( 3 + 1) Bài 3: Cho 2 số dương x,y thõa mãn: x+y=5/4. Tìm Min của: 4 1 A= + x 4y Giải: Ta có: 5 16 y + − y 16 y + x 4 60 y + 5 A= = = . 4 xy 5 4 y (5 − 4 y ) 4 y( − y) 4 a = 4 y 0 < a , b < 5 16a + b 16 1 16 1 Coi : ⇒ Và : A = = + = + = f (a) b = 5 − 4 y a + b = 5 ab b a 5−a a a = 0 16 1 16 ⇒ f '(a) = − 2 =0⇒ 5 ⇒ MinA = f (1) = + 1 = 5 ( 5 − a) 2 a a = − 4 3 Dấu “=” xảy ra khi và chỉ khi x=1; y=1/4 Bài 4: CMR: Với mọi tam giác ABC ta luôn có:
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 A A A 1 + cos 1 + cos 1 + cos 2+ 2+ 2 >3 3 A A A Giải: x2 Xét hàm số: y = + cos x − 1 2 π y ' = x − sin x và y '' = 1 − cos x > 0; ∀x ∈ o; 2 x2 Ta thấy y’ đồng biến và ta có: y > 0. Vậy ta có: cos x > 1 − 2 Áp dụng cho các góc A/2, B/2 , C/2 ta có: A A2 B B2 C C2 cos > 1 − ; cos > 1 − ;cos > 1 − 2 8 2 8 2 8 1 1 1 1 9 A+ B+C ⇒ VT > 2 + + − ( A + B + C ) ≥ 2. − A B C 8 A+ B +C 8 18 π 144 − π 2 = − = >3 3 π 8 8π Bài 5: Cho 2 số không âm tùy ý x,y thõa mãn x+y=1: Tìm Min, Max của: x y S= + y +1 x +1 Giải: Ta có:
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 x y ( x 2 + y 2 ) + ( x + y ) 2 − 2 xy S= + = = . y +1 x +1 xy + ( x + y ) + 1 2 + xy ( x + y)2 1 1 2 − 2t 6 Mà : 0 ≤ xy ≤ = . Coi : t = xy ⇒ t ∈ 0; và S = = −2 + = f (t ) 4 4 4 2+t t+2 1 2 −6 MinS = f ( ) = ⇒S'=
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 x2 x3 Vì : = 2 x + y + y 3 z x + xy + y 2 x3 − y 3 x3 − y 3 y3 − z3 z 3 − x3 Mà : 2 = x− y⇒ 2 + + =0 x + xy + y 2 x + xy + y 2 y 2 + yz + z 2 z 2 + zx + x 2 x3 y3 z3 y3 z3 x3 ⇔ 2 + + = + + x + xy + y 2 y 2 + yz + z 2 z 2 + zx + x 2 x 2 + xy + y 2 y 2 + yz + z 2 z 2 + zx + x 2 x3 + y 3 y3 + z3 z 3 + x3 ⇔ 2P = 2 + + . x + xy + y 2 y 2 + yz + z 2 z 2 + zx + x 2 x3 + y 3 x 2 − xy + y 2 x 2 − xy + y 2 1 Vì : 2 = ( x + y) 2 . mà : 2 ≥ x + xy + y 2 x + xy + y 2 x + xy + y 2 3 x3 + y 3 x+ y 2 ⇒ ≥ ⇒ 2 P = ( x + y + z ) ≥ 2 3 xyz = 2 ⇒ P ≥ 1. x 2 + xy + y 2 3 3 Bài 2: Cho 3 số thực a,b,c tùy ý. Chứng minh rằng: a−c a −b b−c ≤ + (*) 1+ a . 1+ c 2 2 1+ a . 1+ b 2 2 1+ b . 1+ c 2 2 Giải: Đặt:
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 a = tan α b = tan β ⇒ (*) ⇔ sin(α − β ) + sin( β − γ ) ≥ sin(α − γ ) c = tan γ Vì : sin(α − γ ) = sin [ (α − β ) + ( β − γ ) ] ) = sin(α − β )cos( β − γ ) + cos(α − β ) sin( β − γ ) ≤ sin(α − β ) cos( β − γ ) + cos(α − β ) sin( β − γ ) ≤ sin(α − β ) + sin( β − γ ) Điều phải chứng minh. Bài 3: Cho 4 số thực a,b,c,d thõa mãn: a2 +b2=1; c – d =3. Chứng minh: 9+6 2 F = ac + bd − cd ≤ 4 Giải: Gọi: A ( a; b ) ⇒ A ∈ (C ) : x 2 + y 2 = 1 và B ( c; d ) ⇒ B ∈ d : x − y = 3 Ta có : AB 2 = (a − c) 2 + (b − d ) 2 = a 2 + b 2 + c 2 + d 2 − 2ac − 2bd = ( a 2 + b 2 ) + (c − d ) 2 − 2(ac + bd − cd ) = 1 + 9 − 2 F Vì AB nhỏ nhất khi và chỉ khi A,B thuộc đường vuông góc với d kẽ từ O. 3 2 3 2 −2 22 − 12 2 ⇒ AB Min = OB − OA = −1 = ⇒ AB 2 ≥ 2 2 4 22 − 12 2 11 − 6 2 9+6 2 ⇒ 10 − 2 F ≥ ⇒ 5− F ≥ ⇒F≤ 4 4 4 Bài 4: Cho: a ≥ c ≥ 0; b ≥ c Chứng minh:
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 c(a − c) + c(b − c) ≤ ab Giải: Gọi: r r a ( ) c, b − c ⇒ a = c + b − c = b r r b ( ) a − c, c ⇒ b = a − c + c = a rr r r Do : a.b ≤ a . b ⇔ c(a − c) + c(b − c) ≤ ab Bài 5: Cho x,y,z thuộc khoảng (0;1) thõa mãn điều kiện: xy + yz + zx = 1. Tìm Min của: x y z P= + + 1 − x2 1 − y2 1 − z 2 Giải: Đặt
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 A x = tan 2 A B C tan tan tan B 2 + 2 + 2 = 1 ( t anA + tan B + tan C ) y = tan ⇒ P = A B C 2 2 1 − tan 2 1 − tan 2 1 − tan 2 C 2 2 2 z = tan 2 Vì :Trong ∆ABC ta có : t anA + tan B + tan C = t anA.tan B.tan C ≥ 3 3 t anA.tan B.tan C 3 3 ⇒ t anA + tan B + tan C = t anA.tan B.tan C ≥ 3 3 ⇒ P ≥ 2 1 Dấu “=” xảy ra khi và chỉ khi A=B=C=600 hay x = y = z = 3 ………………….Hết………………… BT Viên môn Toán hocmai.vn Trịnh Hào Quang

CÓ THỂ BẠN MUỐN DOWNLOAD
-
PHƯƠNG PHÁP GIẢI CÁC BÀI TOÁN MẠCH ĐIỆN XOAY CHIỀU KHI KHẢO SÁT SỰ THAY ĐỔI CÁC THÔNG SỐ CỦA MẠCH ĐIỆN
19 p |
587 |
144
-
CẤU TRÚC ĐỀ THI ĐẠI HỌC MÔN TOÁN NĂM 2012
2 p |
534 |
96
-
Sáng kiến kinh nghiệm THPT: Khai thác một số bài toán về mạch điện xoay chiều có R,L,C mắc nối tiếp vào dạy học
19 p |
164 |
34
-
Sáng kiến kinh nghiệm THPT: Chuyên đề xử lý mảng một chiều trên ngôn ngữ lập trình Python và C++
43 p |
168 |
27
-
Tổng hợp sử dụng máy tính trong giải toán Vật Lý - Dương Công Tráng (sưu tầm)
3 p |
130 |
13
-
Lý thuyết giải toán điện xoay chiều bằng số phức
25 p |
105 |
7
-
Sáng kiến kinh nghiệm: Giải nhanh, hiệu quả bài tập viết cường độ dòng điện xoay chiều
10 p |
241 |
7
-
Nhìn một số bài toán thuần túy Hình học theo "tọa độ"
33 p |
147 |
7
-
Sáng kiến kinh nghiệm THPT: Sử dụng phương pháp trò chơi Olympia để dạy bài 11-Kiểu mảng một chiều - Tin học 11 bằng ngôn ngữ lập trình C++
90 p |
16 |
5
-
Luận văn Thạc sĩ Toán giải tích: Phương pháp kiểu Newton và phương pháp chiếu cho bài toán bất đẳng thức biến phân
83 p |
42 |
5
-
Sáng kiến kinh nghiệm THPT: Giải pháp giúp học sinh làm nhanh các bài toán trắc nghiệm: Xác định khoảng thời gian đặc biệt trong dao động có tính chất điều hòa
43 p |
69 |
5
-
Luận văn Thạc sĩ Toán học: Phương pháp gradient tăng cường cho bài toán cân bằng hỗn hợp tổng quát, bài toán điểm bất động và bài toán bất đẳng thức biến phân
54 p |
39 |
5
-
Luận văn Thạc sĩ Toán học: Về sự tồn tại nghiệm của bài toán bất đẳng thức biến phân
57 p |
25 |
3
-
Sáng kiến kinh nghiệm: Phương pháp sử dụng điểm đặc biệt trong bài toán tính khoảng cách
23 p |
44 |
2
-
Sáng kiến kinh nghiệm THPT: Ứng dụng phép vị tự trong giản đồ ghép chung để giải nhanh bài toán điện xoay chiều có độ tự cảm và điện dung thay đổi
18 p |
7 |
1
-
Các dạng toán thường gặp môn toán 11 – Bài: Phép chiếu song song
6 p |
5 |
1
-
Các dạng toán thường gặp môn toán 11 – Bài: Véctơ trong không gian
29 p |
6 |
1


Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn
