
Chương 1: ĐẠO HÀM VÀ VI PHÂN HÀM NHIỀU BIẾN
lượt xem 154
download

Đạo hàm riêng cấp 1 của z = f(x,y) Đạo hàm riêng cấp cao của z = f(x,y) Sự khả vi và vi phân. Đạo hàm riêng cấp 1 của f(x, y) theo biến x tại (x0, y0) (Cố định y0, biểu thức là hàm 1 biến theo x, tính đạo hàm của hàm này tại x0) Đạo hàm riêng cấp 1 của f theo biến y tại (x0, y0)
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Chương 1: ĐẠO HÀM VÀ VI PHÂN HÀM NHIỀU BIẾN
- Chương 1: ĐẠO HÀM VÀ VI PHÂN HÀM NHIỀU BIẾN Phần 1
- Nội dung 1. Đạo hàm riêng cấp 1 của z = f(x,y) 2. Đạo hàm riêng cấp cao của z = f(x,y) 3. Sự khả vi và vi phân.
- ĐẠO HÀM RIÊNG CẤP 1 Đạo hàm riêng cấp 1 của f(x, y) theo biến x tại (x0, y0) f f ( x0 + ∆ x , y 0 ) − f ( x0 , y 0 ) fx ( x0 , y 0 ) = ( x0 , y 0 ) = lim x ∆x 0 ∆x (Cố định y0, biểu thức là hàm 1 biến theo x, tính đạo hàm của hàm này tại x0) Đạo hàm riêng cấp 1 của f theo biến y tại (x0, y0) f f ( x0 , y 0 + ∆ y ) − f ( x0 , y 0 ) fy ( x0 , y 0 ) = ( x0 , y 0 ) = lim y ∆y 0 ∆y
- Ý nghĩa của đhr cấp 1 Cho mặt cong S: z = f(x, y), xét f’x(a, b), với c = f(a, b) Xem phần mặt cong S gần P(a, b, c) Mphẳng y = b cắt S theo gt C1 đi qua P. (C1) : z = g(x) = f(x,b) g’(a) = f’x(a, b)
- f’x(a, b) = g’(a) là hệ số góc tiếp tuyến T1 của C1 tại x = a. f’y(a, b) là hệ số góc tiếp tuyến T2 của C2 ( là phần giao của S với mp x = a) tại y = b
- Các ví dụ về cách tính. 1/ Cho f(x,y) = 3x2y + xy2 Tính fx (1,2), fy (1,2) fx (1,2) : cố định y0 = 2, ta có hàm 1 biến 2 f ( x , 2) = 6 x + 4 x 2 � fx (1,2) = (6 x + 4 x ) |x =1 = 12 x + 4 |x =1 = 16
- f(x,y) = 3x2y + xy2 fy (1,2) cố định x0 = 1, ta có hàm 1 biến 2 f (1, y ) = 3y + y 2 � fy (1,2) = (3y + y ) |y = 2 = (3 + 2 y ) |y = 2 = 7
- 2/ f(x,y) = 3x2y + xy2 Tính fx ( x , y ), fy ( x , y ) với mọi (x, y) ∈ R2 fx ( x , y ) Xem y là hằng, tính đạo hàm f(x, y) theo x 2 fx ( x , y ) = 6 xy + y , ∀( x , y ) 2 Áp dụng tính: fx (1,2) = (6 xy + y ) |x =1, y =2 = 16 (Đây là cách thường dùng để tính đạo hàm tại 1 điểm)
- f(x,y) = 3x2y + xy2 fy ( x , y ) Xem x là hằng, tính đạo hàm f(x, y) theo y 2 fy ( x , y ) = 3x + x 2 y , ∀( x , y ) Áp dụng tính: 2 fx (1,2) = (3x + 2 xy ) |x =1, y =2 = 7
- 2/ Tính fx (1,1), fy (1,1) với f(x, y) = xy y −1 fx ( x , y ) = yx , ∀x > 0 1−1 � fx (1,1) = 1 �1 = 1; y fy ( x , y ) = x ln x , ∀x > 0 1 � fy (1,1) = 1 ln1 = 0
- xy ,( x , y ) (0,0) 3/ Cho f (x, y ) = x 2 + y 2 0, ( x , y ) = (0,0) a/ Tính fx (0,1) b/ Tính fx (0,0)
- xy 2 2 ,( x , y ) (0,0) f (x, y ) = x + y 0, ( x , y ) = (0,0) a/ Tính fx (0,1) (0,1) không phải là điểm phân chia biểu thức. 2 2 2 y (x + y ) − 2x y fx ( x , y ) = 2 2 2 , ∀( x , y ) (0,0) (x + y ) � fx (0,1) = 1
- xy 2 2 ,( x , y ) (0,0) f (x, y ) = x + y 0, ( x , y ) = (0,0) b/ Tính fx (0,0) (0,0) là điểm phân chia biểu thức ⇒ Tính bằng định nghĩa f ( x0 + ∆x , y 0 ) − f ( x0 , y 0 ) fx ( x0 , y 0 ) = lim ∆x 0 ∆x f (0 + ∆x ,0) − f (0,0) fx (0,0) = lim = lim 0 = 0 ∆x 0 ∆x ∆x 0
- − x2 +y 2 fx ( x , y ) 4/ Cho f (x, y ) = e tính Hàm f xác định tại, mọi (x,y) x − x2 +y 2 fx ( x , y ) = − e , ∀( x , y ) (0,0) 2 2 x +y Công thức trên không đúng cho (x, y) = (0, 0)
- − x2 +y 2 f (x, y ) = e • Tại (0, 0): tính bằng định nghĩa f (0 + ∆x ,0) − f (0,0) − ∆x 2 e −1 = ∆x ∆x − ∆x 2 e −1 � lim =m1 ∆x 0 ∆x f không có đạo hàm theo x tại (0, 0) (f’x(0,0) không tồn tại) .
- Ví dụ cho hàm 3 biến (Tương tự hàm 2 biến) xz Cho f ( x , y , z ) = x + ye Tính fx , fy , fz tại (0, −1,2) xz fx = 1 + yze � fx (0, −1,2) = 1 − 2 = −1 xz fy = e xz fz = xye
- ĐẠO HÀM RIÊNG CẤP CAO Xét hàm 2 biến f(x,y) f’x, f’y cũng là các hàm 2 biến Đạo hàm riêng cấp 2 của f là các đhr cấp 1( nếu có) của f’x, f’y 2 2 f �f � f = f �f � fxx = f = 2 = � � xy = x2 x x�x � x y y x 2 2 f � f� f �f � fyx = = fyy = f 2 = = � � y x x y y y y y y
- VÍ DỤ f ( x , y ) = x 2 + xy + cos( y − x ) Tính các đạo hàm riêng cấp 2 của f fx = 2 x + y + sin( y − x ) fy = x − sin( y − x ) fxx = ( fx ) x = ( 2 x + y + sin( y − x ) ) x = 2 − cos( y − x ) fxy = ( fx ) y = 1 + cos( y − x )
- fy = x − sin( y − x ) f yx = ( f y ) = 1 + cos( y − x ) x fyy = ( fy ) = − cos( y − x ) y fyx (0, π ) = 0, fyy (0, π ) = 1 fxx (0, π ) = 3, fxy (0, π ) = 0
- Tổng quát thì các đạo hàm hỗn hợp không bằng nhau fxy fyx Định lý Schwartz: nếu f(x, y) và các đạo hàm riêng fx , fy , fxy , fyx liên tục trong miền mở chứa (x0, y0) thì fxy ( x0 , y 0 ) = fyx ( x0 , y 0 ) (VD 2.28 trang 53, Toán 3, Đỗ Công Khanh) •Ñoái vôùi caùc haøm sô caáp thöôøng gaëp, ñònh lyù Schwartz luoân ñuùng taïi caùc ñieåm ñaïo haøm toàn taïi. •Ñònh lyù Schwartz cuõng ñuùng cho ñaïo haøm caáp 3 fxxy = fxyx = fyxx trôû leân.

CÓ THỂ BẠN MUỐN DOWNLOAD
-
Trắc nghiệm đại số 10 chương 1
5 p |
815 |
145
-
CHƯƠNG 1: HÀM GIẢI TÍCH §1. SỐ PHỨC VÀ CÁC PHÉP TÍNH
160 p |
542 |
118
-
CHƯƠNG 1: ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ
4 p |
469 |
116
-
Đề kiểm tra 1 tiết chương 1 Ứng dụng đạo hàm - Giải tích lớp 12 (Kèm đáp án)
22 p |
215 |
33
-
Một số bài tập ứng dụng đạo hàm môn toán 12 - Cực trị của hàm số
2 p |
219 |
31
-
Câu hỏi trắc nghiệm ôn chương I: Đạo hàm
30 p |
142 |
30
-
CHƯƠNG 3 PHÉP TÍNH VI PHÂN CỦA HÀM SỐ
15 p |
237 |
24
-
Đề kiểm tra 1 tiết Toán 12 - Chương 1 Ứng dụng đạo hàm - Giải tích
3 p |
213 |
24
-
Toán đạo hàm và tích phân
19 p |
123 |
21
-
Một số bài tập ứng dụng đạo hàm môn toán 12 - Tính đơn điệu của hàm số
1 p |
171 |
15
-
Một số bài tập ứng dụng đạo hàm môn toán 12 - Sự tiếp xúc và phương trình tiếp tuyến
2 p |
144 |
12
-
Một số bài tập ứng dụng đạo hàm môn toán 12 - Sựu tương quan của 2 đồ thị
2 p |
131 |
12
-
Một số bài tập ứng dụng đạo hàm môn toán 12 - GTLN-GTNN
1 p |
233 |
12
-
Giải bài tập Ôn tập chương 1 Ứng dụng đạo hàm SGK Giải tích 12
14 p |
117 |
7
-
Ôn tập kiến thức chương 1 môn Toán lớp 12 - THPT Nguyễn Du, Thanh Oai, Hà Nội
6 p |
136 |
7
-
Hướng dẫn giải bài 12 trang 47 SGK Giải tích 12
14 p |
113 |
6
-
Chương 1: Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số - Sự đồng biến và nghịch biến của hàm số
19 p |
43 |
2


Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn
