Computing feature matrices using PCA-SVD hybrid method on small-scale systems
5
lượt xem 2
download
lượt xem 2
download
Download
Vui lòng tải xuống để xem tài liệu đầy đủ
This paper aims to develop an effective method for reduction and decomposition on large matrices with low required computational resources and fast processing times. Our contribution is to design a PCA-SVD hybrid method that dividesthe feature extraction into two phases: PCA-based size reduction and SVD-based decomposition. In our method, PCA is first applied to a large matrix to extract its important components
Chủ đề:
Bình luận(0) Đăng nhập để gửi bình luận!
CÓ THỂ BẠN MUỐN DOWNLOAD