đại số tuyến tính - chương 1 số phức
lượt xem 10
download
Download
Vui lòng tải xuống để xem tài liệu đầy đủ
Mỗi số phức được biểu diễn bởi một điểm trên mặt phẳng phức. Khoảng cách từ gốc toạ độ O tới z được gọi là môđun của số phức z.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: đại số tuyến tính - chương 1 số phức
- Đại học Quốc gia TP.HCM TRƯỜNG ĐẠI HỌC BÁCH KHOA Khoa: Khoa Học Ứng Dụng Bộ môn: Toán Ứng Dụng TOÁN 2 Chương 1: SỐ PHỨC Toán 2 Slide 1
- CHƯƠNG 1: SỐ PHỨC Chương 1: SỐ PHỨC Toán 2 Slide 2
- 1. DẠNG ĐẠI SỐ CỦA SỐ PHỨC: 1. Dạng đại số của số phức: a/ Định nghĩa: • Dạng đại số của số phức là: = a + i b z Ở đây : a : được gọi là phần thực của số phức z , ký hiệu là Re( z ) b : được gọi là phần ảo của số phức z , Im( z ) ký hiệu là i : được gọi là đơn vị ảo với i 2 = −1 Chương 1: SỐ PHỨC Toán 2 Slide 3
- 1. DẠNG ĐẠI SỐ CỦA SỐ PHỨC: • Tập hợp số phức ta ký hiệu là C hay còn gọi là mặt phẳng phức. y Ở đây : z b Trục Ox : được gọi là trục thực x O a Trục Oy : được gọi là trục ảo Mỗi số phức được biểu diễn bởi một điểm trên mặt phẳng phức. Khoảng cách từ gốc toạ độ O tới z được gọi là mod ( z ) môđun của số phức z và ký hiệu làz hoặc Chương 1: SỐ PHỨC Toán 2 Slide 4
- 1. DẠNG ĐẠI SỐ CỦA SỐ PHỨC: z = a − i b được gọi là số phức liên hợp của z • b/ Các phép toán: z1 = a1 + i b1 Cho hai số phức z2 = a2 + i b2 a1 = a2 ∗ z1 = z2 ⇔ b1 = b2 z1 + z2 = ( a1 + a2 ) + i ( b1 + b2 ) ∗ ∗ z1 z2 = ( a1 + i b1 ) ( a2 + i b2 ) x x = ( a1 a2 − b1 b2 ) + i ( a1 b2 + a2 b1 ) Chương 1: SỐ PHỨC Toán 2 Slide 5
- 1. DẠNG ĐẠI SỐ CỦA SỐ PHỨC: 1. Ở đây : Ta nhân tương tự như trong trường hợp phức với chú ý i 2 = −1 số Dễ nhận thấy z = a + i b thì z. z = a 2 + b 2 a −ib 1 1 và = = ( a + i b) ( a − i b) a+ib z a − b =2 + i 2 2 a +b a +b 2 Chương 1: SỐ PHỨC Toán 2 Slide 6
- 1. DẠNG ĐẠI SỐ CỦA SỐ PHỨC: ( a1 + i b1 ) ( a2 − i b2 ) a1 + i b1 z1 ∗ = = ( a1 + i b1 ) ( a2 − i b2 ) a2 + i b2 z2 a1 a2 + b1 b2 a2 b1 + a1 b2 = +i a2 + b2 a2 + b2 2 2 2 2 ( ĐK: z2 ≠ 0 ) Chương 1: SỐ PHỨC Toán 2 Slide 7
- 1. DẠNG ĐẠI SỐ CỦA SỐ PHỨC: Từ định nghĩa của các phép toán, ta dễ dàng chứng minh các công thức sau: ∗ z + z = ( a + i b ) + ( a − i b ) = 2 a = 2 Re ( z ) ∗ z − z = ( a + i b ) − ( a − i b ) = 2 i b = 2 i Im( z ) ∗ z1+ z2 = z1 + z2 ∗ z1− z2 = z1 − z2 ∗ z1. z2 = z1. z2 z1 z1 ∗ = z2 z2 Chương 1: SỐ PHỨC Toán 2 Slide 8
- 1. DẠNG ĐẠI SỐ CỦA SỐ PHỨC: VD1: Biểu diễn số phức sau dưới dạng đại số 1+ 3i z= 1+ i Nhân tử và mẫu cho số phức liên hợp 1 − i ta được (1 + 3 i ) (1 − i ) 4 + 2 i z= = = 1+ i (1 + i ) (1 − i ) 2 Chương 1: SỐ PHỨC Toán 2 Slide 9
- 1. DẠNG ĐẠI SỐ CỦA SỐ PHỨC: VD2: Cho f ( z ) = z 3 − ( 2 + i ) z 2 + ( 2 + i ) z − 2i a/ Tính f ( i ) b/ Giải phương trình f ( z ) = 0 Giải: a/ Dễ dàng tính được f ( i ) = 0 b/ z = i là 1 nghiệm của phương trình nên ta phân tích được f ( z ) = ( z − i ) ( z 2 − 2 z + 2) = 0 Chương 1: SỐ PHỨC Toán 2 Slide 10
- 1. DẠNG ĐẠI SỐ CỦA SỐ PHỨC: Nhận xét : Phương trình z 2 − 2 z + 2 = 0 có 2 nghiệm là 1 ± i ở đây ∆' = − 1 = i 2 Kết luận : Phương trình f ( z ) = 0 có 3 nghiệm là z = i , z = 1± i Chương 1: SỐ PHỨC Toán 2 Slide 11
- 2. DẠNG LƯỢNG GIÁC CỦA SỐ PHỨC: 2. Dạng lượng giác của số phức: y a/ Định nghĩa: z b Cho số phức z = a + i b , z ≠ 0 r Gọi r là khoảng cách từ ϕ x gốc toạ độ O tới z O a và ϕ là góc hợp giữa hướng dương của trục thực với bán kính vectơ của điểm .z Khi đó ta có : z = a + i b = r ( cos ϕ + i sin ϕ ) Chương 1: SỐ PHỨC Toán 2 Slide 12
- 2. DẠNG LƯỢNG GIÁC CỦA SỐ PHỨC: Biểu thức z = r ( cos ϕ + i sin ϕ ) được gọi là • dạng lượng giác của số phứcz Ở đây : r = z = a 2 + b 2 chính là mođun của số phức z arg ( z ) ϕ z đb ợc gọi là acgumen của số phức ư b Ta có ký hiệuϕ = ⇒ ϕ = arctg tg ,: a a Chú ý : chọn ϕ sao cho b và sin ϕ cùng dấu Chương 1: SỐ PHỨC Toán 2 Slide 13
- 2. DẠNG LƯỢNG GIÁC CỦA SỐ PHỨC: VD : Số phức z = −1 − i ( − 1) + ( − 1) = 2 2 2 Ta có: z = r = −1 5π =1 ⇒ ϕ = π tgϕ = hoặc ϕ = −1 4 4 5π Ta chọn ϕ = 4 cos 5π + i sin 5π Vậy z = −1 − i = 2 4 4 Chương 1: SỐ PHỨC Toán 2 Slide 14
- 2. DẠNG LƯỢNG GIÁC CỦA SỐ PHỨC: b/ Các phép toán: Cho hai số phức z1 = r1 ( cos ϕ1 + i sin ϕ1 ) z2 = r2 ( cos ϕ2 + i sin ϕ 2 ) r1 = r2 ∗ z1 = z2 ⇔ , k ∈Z ϕ1 = ϕ 2 + k 2π ∗ z1 z2 = r1.r2 [ cos ( ϕ1 + ϕ2 ) + i sin ( ϕ1 + ϕ2 ) ] x z1 r1 = [ cos ( ϕ1 − ϕ 2 ) + i sin ( ϕ1 − ϕ 2 ) ] , z2 ≠ 0 ∗ z2 r2 Chương 1: SỐ PHỨC Toán 2 Slide 15
- 2. DẠNG LƯỢNG GIÁC CỦA SỐ PHỨC: 2. Từ các phép toán này ta có thể chứng minh được các công thức sau: [ r ( cos ϕ + ) ] k = r k ( cos kϕ + i sin kϕ ) ( 1 ) i sin ϕ k ∈Z ∗ Công thức (1) được gọi là công thức Moivre eiϕ = cos ϕ + i sin ϕ ( 2 ) ∗ Công thức (2) được gọi là công thức Euler Chương 1: SỐ PHỨC Toán 2 Slide 16
- 2. DẠNG LƯỢNG GIÁC CỦA SỐ PHỨC: Vậy số phức z = r ( cos ϕ + i sin ϕ ) = r e iϕ Biểu thức z = r e iϕ được gọi là dạng mũ của số phức z ( 1 + i) 8 VD : Tính cos π + i sin π Ta có : ( 1 + i ) = 2 4 4 ⇒ ( 1 + i ) 8 = 24 ( cos 2π + i sin 2π ) = 24 Chương 1: SỐ PHỨC Toán 2 Slide 17
- 3. KHAI CĂN CỦA SỐ PHỨC: 3. Khai căn của số phức: Ta giải phương trình z = α n với z ∈ C α ∈ C Giả sử α = r ( cos ϕ + i sin ϕ ) Ta đặt z = ρ ( cos θ + i sin θ ) Khi đó ta có z n = ρ n ( cos nθ + i sin nθ ) = r ( cos ϕ + i sin ϕ ) ρ = n r ρn = r ⇔ ⇔ ϕ + k 2π nθ = ϕ + k 2π θ = , k ∈Z n Chương 1: SỐ PHỨC Toán 2 Slide 18
- 3. KHAI CĂN CỦA SỐ PHỨC: Vậy nghiệm của phương trìnhz = α n là ϕ + k 2π + i sin ϕ + k 2π (∗ ) zk = r cos n n n ở đây k = 0 , 1 , ... , n − 1 là ta có đủ nghiệm của phương trình. Vậy phương trình z n = α có đúng n nghiệm cho bởi công thức (*) với k = 0 , 1 , ... , n − 1 và α chúng được gọi là các căn bậc n của số phức Chương 1: SỐ PHỨC Toán 2 Slide 19
- 3. KHAI CĂN CỦA SỐ PHỨC: 3. 3 1 VD: Tìm Ta có : 1 = cos 0 + i sin 0 cos k 2π + i sin k 2π 1 = cos 0 + i sin 0 = v ậy 3 3 3 với k = 0 , 1 , 2 ε0 = cos 0 + i sin 0 = 1 V ậy 1 là 3 2π 2π 1 3 ε1 = cos + i sin =− + i 3 3 2 2 4π 4π 1 3 ε2 = cos + i sin =− − i 3 3 2 2 Chương 1: SỐ PHỨC Toán 2 Slide 20
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đề thi học kỳ I năm học 2009-2010 môn: Đại số tuyến tính (Ca 3)
2 p |
484
|
86
-
Đề thi kết thúc học phần K37 môn: Đại số tuyến tính (Mã đề thi 356) - Đại Học Kinh tế TP. HCM
3 p |
580
|
81
-
Bộ đề thi môn: Đại số tuyến tính
13 p |
355
|
57
-
Đề thi kết thúc môn Đại số tuyến tính (Đề số 12) - ĐH Kinh tế
3 p |
665
|
42
-
Đề kiểm tra giữa kỳ K37 môn: Đại số tuyến tính - Đại Học Kinh tế TP. HCM
3 p |
347
|
37
-
Kế hoạch bài giảng: Hình giải tích và đại số tuyến tính - PGS TS Nguyễn Xuân Viên
66 p |
345
|
32
-
Đề thi kết thúc học phần K37 môn: Đại số tuyến tính (Mã đề thi 483) - Đại Học Kinh tế TP. HCM
3 p |
261
|
29
-
Đề thi kết thúc học phần K36 môn: Đại số tuyến tính - Trường Đại học Kinh tế TPHCM
3 p |
287
|
21
-
Bài tập môn Đại số tuyến tính
26 p |
204
|
20
-
Đề thi kết thúc học phần K37 môn: Đại số tuyến tính (Mã đề thi 134) - Đại Học Kinh tế TP. HCM
3 p |
193
|
13
-
Đề thi kết thúc môn Đại số tuyến tính (Đề số 11) - ĐH Kinh tế
3 p |
157
|
12
-
Đề cương chi tiết học phần môn: Đại số tuyến tính
4 p |
250
|
12
-
Đề thi kết thúc môn Đại số tuyến tính (Đề số 210) - ĐH Kinh tế
3 p |
116
|
10
-
Đề thi kết thúc môn Đại số tuyến tính (Đề số 485) - ĐH Kinh tế
3 p |
121
|
9
-
Đề thi kết thúc môn Đại số tuyến tính (Đề số 357) - ĐH Kinh tế
3 p |
134
|
9
-
Đề thi kết thúc môn Đại số tuyến tính (Đề số 209) - ĐH Kinh tế
3 p |
126
|
8
-
Đề thi kết thúc môn Đại số tuyến tính (Đề số 132) - ĐH Kinh tế
3 p |
152
|
8
-
Đề thi kết thúc học phần môn Đại số tuyến tính: Mã đề thi 209
3 p |
112
|
4
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn
