ĐÁP ÁN – THANG ĐIỂM ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2011 Môn: TOÁN; Khối D
lượt xem 65
download
Download
Vui lòng tải xuống để xem tài liệu đầy đủ
Tài liệu tham khảo và tuyển tập các đề thi đại học môn toán giúp các bạn ôn thi tuyển sinh cao đẳng , đại học tốt hơn
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: ĐÁP ÁN – THANG ĐIỂM ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2011 Môn: TOÁN; Khối D
- BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐÁP ÁN – THANG ĐIỂM ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2011 ⎯⎯⎯⎯⎯⎯⎯⎯ Môn: TOÁN; Khối D ĐỀ CHÍNH THỨC (Đáp án - thang điểm gồm 04 trang) ĐÁP ÁN − THANG ĐIỂM Câu Đáp án Điểm 1. (1,0 điểm) I (2,0 điểm) \ {− 1 } . • Tập xác định: D = • Sự biến thiên: 1 0,25 – Chiều biến thiên: y ' = > 0, ∀ x ∈ D. ( x + 1) 2 Hàm số đồng biến trên các khoảng (– ∞; – 1) và (– 1; + ∞). – Giới hạn và tiệm cận: lim y = lim y = 2; tiệm cận ngang: y = 2. x → −∞ x → +∞ 0,25 lim − y = + ∞, lim + y = – ∞; tiệm cận đứng: x = – 1. x → ( −1) x → ( −1) – Bảng biến thiên: x −∞ +∞ –1 + + y’ +∞ 0,25 2 y −∞ 2 • Đồ thị: y 2 0,25 1 –1 O x 2. (1,0 điểm) Gọi d: y = kx + 2k + 1, suy ra hoành độ giao điểm của d và (C) là nghiệm phương trình: 2x +1 ⇔ 2x + 1 = (x + 1)(kx + 2k + 1) (do x = – 1 không là nghiệm) kx + 2k + 1 = 0,25 x +1 ⇔ kx2 + (3k – 1)x + 2k = 0 (1). d cắt (C) tại hai điểm phân biệt A và B, khi và chỉ khi (1) có hai nghiệm phân biệt ⎧k ≠ 0 ⎧k ≠ 0 ⎧k ≠ 0 ⎪ 0,25 ⇔⎨ ⇔⎨ 2 ⇔⎨ (*). ⎩Δ > 0 ⎩ k − 6k + 1 > 0 ⎪k < 3 − 2 2 ∨ k > 3 + 2 2. ⎩ Khi đó: A(x1; kx1 + 2k + 1) và B(x2; kx2 + 2k + 1), x1 và x2 là nghiệm của (1). 0,25 d(A, Ox) = d(B, Ox) ⇔ kx1 + 2k + 1 = kx2 + 2k + 1 Trang 1/4
- Câu Đáp án Điểm ⇔ k(x1 + x2) + 4k + 2 = 0 (do x1 ≠ x2). Áp dụng định lý Viét đối với (1), suy ra: (1 – 3k) + 4k + 2 = 0 ⇔ k = – 3, thỏa mãn (*). 0,25 Vậy, giá trị cần tìm là: k = – 3. 1. (1,0 điểm) II (2,0 điểm) Điều kiện: cosx ≠ 0, tanx ≠ − 3 (*). 0,25 Phương trình đã cho tương đương với: sin2x + 2cosx – sinx – 1 = 0 ⇔ 2cosx(sinx + 1) – (sinx + 1) = 0 ⇔ (sinx + 1)(2cosx – 1) = 0. 0,25 π π 1 ⇔ sinx = – 1 ⇔ x = – + k2π hoặc cosx = ⇔ x = ± + k2π. 0,25 2 2 3 π Đối chiếu điều kiện (*), suy ra nghiệm: x = + k2π (k ∈ Z). 0,25 3 2. (1,0 điểm) Điều kiện: – 1 ≤ x ≤ 1 (*). ( ) Khi đó, phương trình đã cho tương đương với: log 2 ( 8 − x 2 ) = log 2 ⎡ 4 0,25 1+ x + 1 − x ⎤ ⎣ ⎦ ) ( ( ) ⇔ 8 – x2 = 4 1 + x + 1 − x ⇔ (8 – x2)2 = 16 2 + 2 1 − x 2 (1). 0,25 Đặt t = 1 − x 2 , (1) trở thành: (7 + t2)2 = 32(1 + t) ⇔ t4 + 14t2 – 32t + 17 = 0 0,25 22 ⇔ (t – 1) (t + 2t + 17) = 0 ⇔ t = 1. Do đó, (1) ⇔ 1 − x 2 = 1 ⇔ x = 0, thỏa mãn (*). 0,25 Vậy, phương trình có nghiệm: x = 0. Đặt t = 2 x + 1 ⇒ 4x = 2(t2 – 1), dx = tdt. III 0,25 Đổi cận: x = 0 ⇒ t = 1; x = 4 ⇒ t = 3. (1,0 điểm) ⎛ 10 ⎞ 3 3 2t 3 − 3t I= ∫ dt = ∫ ⎜ 2t 2 − 4t + 5 − ⎟ dt 0,25 t+2 t + 2⎠ 1⎝ 1 3 ⎛ 2t 3 ⎞ − 2t 2 + 5t − 10 ln t + 2 ⎟ =⎜ 0,25 ⎝3 ⎠1 34 3 = + 10 ln . 0,25 3 5 Hạ SH ⊥ BC (H ∈ BC); (SBC) ⊥ (ABC) ⇒ SH ⊥ (ABC); SH = SB.sin SBC = a 3. IV 0,25 (1,0 điểm) 1 S Diện tích: SABC = BA.BC = 6a2. 2 0,25 1 Thể tích: VS.ABC = SABC.SH = 2a 3 3. 3 K H Hạ HD ⊥ AC (D ∈ AC), HK ⊥ SD (K ∈ SD) B C ⇒ HK ⊥ (SAC) ⇒ HK = d(H, (SAC)). D 0,25 BH = SB.cos SBC = 3a ⇒ BC = 4HC ⇒ d(B, (SAC)) = 4.d(H, (SAC)). A 3a HC Ta có AC = BA2 + BC 2 = 5a; HC = BC – BH = a ⇒ HD = BA. = . 5 AC 0,25 6a 7 SH .HD 3a 7 HK = = . Vậy, d(B, (SAC)) = 4.HK = . 7 14 2 2 SH + HD ⎧( x 2 − x)(2 x − y ) = m V ⎪ Hệ đã cho tương đương với: ⎨ 2 0,25 (1,0 điểm) ⎪( x − x) + (2 x − y ) = 1 − 2m. ⎩ Trang 2/4
- Câu Đáp án Điểm 1 Đặt u = x2 – x, u ≥ – ; v = 2x – y. 4 ⎧u 2 + (2m − 1)u + m = 0 (1) ⎧uv = m Hệ đã cho trở thành: ⎨ ⇔⎨ 0,25 ⎩u + v = 1 − 2m ⎩v = 1 − 2m − u. 1 Hệ đã cho có nghiệm, khi và chỉ khi (1) có nghiệm thỏa mãn u ≥ – . 4 − u2 + u 1 , ta có: (1) ⇔ m(2u + 1) = – u2 + u ⇔ m = Với u ≥ – . 2u + 1 4 −u 2 + u 1 Xét hàm f(u) = , với u ≥ – ; ta có: 0,25 2u + 1 4 2u 2 + 2u − 1 −1 + 3 f '(u ) = – ; f '(u ) = 0 ⇔ u = . 2 (2u + 1) 2 Bảng biến thiên: −1 + 3 1 +∞ u − 2 4 + f '(u ) 0 – 2− 3 0,25 2 f(u) 5 − –∞ 8 2− 3 Suy ra giá trị cần tìm là: m ≤ . 2 1. (1,0 điểm) VI.a B (2,0 điểm) Gọi D(x; y) là trung điểm AC, ta có: BD = 3GD ⎧ x + 4 = 3( x − 1) ⎛7 ⎞ 0,25 ⇒ D ⎜ ; 1⎟ . ⇔⎨ ⎩ y − 1 = 3( y − 1) ⎝2 ⎠ Gọi E(x; y) là điểm đối xứng của B qua phân giác trong G• d: x – y – 1 = 0 của góc A. Ta có EB vuông góc với d và trung điểm I của EB A C E D thuộc d nên tọa độ E là nghiệm của hệ: 0,25 ⎧1( x + 4) + 1( y − 1) = 0 ⎧x + y + 3 = 0 ⎪ ⇒ E(2; – 5). ⇔⎨ ⎨ x − 4 y +1 ⎩x − y − 7 = 0 − − 1= 0 ⎪2 ⎩ 2 Đường thẳng AC đi qua D và E, có phương trình: 4x – y – 13 = 0. 0,25 ⎧x − y −1 = 0 ⇒ A(4; 3). Suy ra: C(3; – 1). Tọa độ A(x; y) thỏa mãn hệ: ⎨ 0,25 ⎩4 x − y − 13 = 0 2. (1,0 điểm) Mặt phẳng (P) đi qua A, vuông góc với d, có phương trình: 2x + y – 2z + 2 = 0. 0,25 Gọi B là giao điểm của trục Ox với (P), suy ra ∆ là đường thẳng đi qua các điểm A, B. 0,25 B ∈ Ox, có tọa độ B(b; 0; 0) thỏa mãn phương trình 2b + 2 = 0 ⇒ B(– 1; 0; 0). 0,25 ⎧ x = 1 + 2t ⎪ Phương trình ∆: ⎨ y = 2 + 2t 0,25 ⎪ z = 3 + 3t. ⎩ Gọi z = a + bi (a, b ∈ R), ta có: z – (2 + 3i) z = 1 – 9i ⇔ a + bi – (2 + 3i)(a – bi) = 1 – 9i VII.a 0,25 Trang 3/4
- Câu Đáp án Điểm (1,0 điểm) ⇔ – a – 3b – (3a – 3b)i = 1 – 9i 0,25 ⎧− a − 3b = 1 ⇔⎨ 0,25 ⎩3a − 3b = 9 ⎧a = 2 Vậy z = 2 – i. ⇔⎨ 0,25 ⎩b = −1. 1. (1,0 điểm) VI.b (2,0 điểm) y Đường tròn (C) có tâm I(1; – 2), bán kính bằng 10. 0,25 Ta có: IM = IN và AM = AN ⇒ AI ⊥ MN; suy ra phương 1 A trình ∆ có dạng: y = m. O x Hoành độ M, N là nghiệm phương trình: –2 I x2 – 2x + m2 + 4m – 5 = 0 (1). 0,25 –3 N M (1) có hai nghiệm phân biệt x1 và x2, khi và chỉ khi: m2 + 4m – 6 < 0 (*); khi đó ta có: M(x1; m) và N(x2; m). AM ⊥ AN ⇔ AM . AN = 0 ⇔ (x1 – 1)(x2 – 1) + m2 = 0 ⇔ x1x2 – (x1 + x2) + m2 + 1 = 0. 0,25 Áp dụng định lý Viét đối với (1), suy ra: 2m2 + 4m – 6 = 0 0,25 ⇔ m = 1 hoặc m = – 3, thỏa mãn (*). Vậy, phương trình ∆: y = 1 hoặc y = – 3. 2. (1,0 điểm) Gọi I là tâm của mặt cầu. I ∈ ∆, suy ra tọa độ I có dạng: I(1 + 2t; 3 + 4t; t). 0,25 Mặt cầu tiếp xúc với (P), khi và chỉ khi: d(I, (P)) = 1 2(1 + 2t ) − (3 + 4t ) + 2t 0,25 =1 ⇔ 3 ⇔ t = 2 hoặc t = – 1. Suy ra: I(5; 11; 2) hoặc I(– 1; – 1; – 1). 0,25 Phương trình mặt cầu: 0,25 (x – 5)2 + (y – 11)2 + (z – 2)2 = 1 hoặc (x + 1)2 + (y + 1)2 + (z + 1)2 = 1. 2 x2 + 4 x VII.b y' = ; 0,25 ( x + 1) 2 (1,0 điểm) y' = 0 ⇔ x = – 2 hoặc x = 0. 0,25 17 y(0) = 3, y(2) = . 0,25 3 17 Vậy: min y = 3, tại x = 0; max y = , tại x = 2. 0,25 [0; 2] 3 [0; 2] ------------- Hết ------------- Trang 4/4
CÓ THỂ BẠN MUỐN DOWNLOAD
-
ĐÁP ÁN – THANG ĐIỂM ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2009 Môn thi: TOÁN; Khối: B
4 p |
344
|
56
-
ĐÁP ÁN-THANG ĐIỂM ĐỀ THI THỬ TUYỂN SINH CĐ-ĐẠI HỌC 2010 Môn thi: Địa lí, Khối C
5 p |
167
|
45
-
ĐÁP ÁN VÀ THANG ĐIỂM CHẤM ĐỀ THI THỬ ĐẠI HỌC LẦN I. NĂM 2011 Môn: Tiếng Anh - Khối D
4 p |
121
|
27
-
Đáp án và thang điểm đề thi tuyển sinh Đại học năm 2009 môn Địa
4 p |
150
|
18
-
Đáp án và thang điểm đề thi tuyển sinh Đại học năm 2006 môn Địa
5 p |
131
|
18
-
Đáp án và thang điểm đề thi thử vào lớp 10 năm học 2014-2015 môn Ngữ văn - Trường THPT Nguyễn Huệ
4 p |
230
|
9
-
Đáp án - thang điểm đề thi tuyển sinh đại học, cao đẳng năm 2006
5 p |
137
|
9
-
Đáp án và thang điểm Đề thi tuyển sinh cao đẳng năm 2010 môn Văn khối C
3 p |
97
|
6
-
Đáp án, thang điểm đề thi tuyển sinh đại học, cao đẳng năm 2010 môn: Văn, khối C
4 p |
68
|
6
-
Đáp án và thang điểm đề thi thử ĐH môn Toán khối A lần 2 năm 2014
6 p |
161
|
5
-
Đáp án, thang điểm đề thi tuyển sinh đại học, cao đẳng năm 2006 môn: Toán - Khối D
32 p |
100
|
5
-
Đáp án, thang điểm đề thi tuyển sinh đại học và cao đẳng năm 2007 môn: Văn, khối C
3 p |
96
|
3
-
Đáp án, thang điểm đề thi tuyển sinh đại học, cao đẳng năm 2013 môn: Văn, khối C
4 p |
104
|
3
-
Đáp án, thang điểm đề thi tuyển sinh đại học, cao đẳng năm 2012 môn: Văn, khối C
4 p |
64
|
2
-
Đáp án, thang điểm đề thi tuyển sinh đại học, cao đẳng năm 2011 môn: Văn, khối C
3 p |
69
|
2
-
Đáp án, thang điểm đề thi tuyển sinh đại học, cao đẳng năm 2009 môn: Văn, khối C
4 p |
73
|
2
-
Đáp án, thang điểm đề thi tuyển sinh đại học, cao đẳng năm 2008 môn: Văn, khối C
3 p |
74
|
2
-
Đáp án và thang điểm đề thi trung học phổ thông quốc gia năm 2015 môn: Toán
3 p |
88
|
1
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn
