intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

ĐỀ ÔN THI CAO ĐẲNG, ĐẠI HỌC NĂM 2011 MÔN TOÁN HỌC - MÃ ĐỀ 006

Chia sẻ: Nguyen Nhi | Ngày: | Loại File: PDF | Số trang:6

68
lượt xem
10
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tham khảo tài liệu 'đề ôn thi cao đẳng, đại học năm 2011 môn toán học - mã đề 006', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả

Chủ đề:
Lưu

Nội dung Text: ĐỀ ÔN THI CAO ĐẲNG, ĐẠI HỌC NĂM 2011 MÔN TOÁN HỌC - MÃ ĐỀ 006

  1. ĐỀ ÔN THI CAO ĐẲNG, ĐẠI HỌC NĂM 2011 MÔN TOÁN HỌC MÃ ĐỀ 006 Thời gian làm bài: 180 phút (Không kể thời gian giao đề) A. PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7 điểm): y  x 3  3mx 2  3(m 2  1) x  m3  m (1) Câu I (2 điểm): Cho hàm số 1.Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) ứng với m=1 2.Tìm m để hàm số (1) có cực trị đồng thời khoảng cách từ điểm cực đại của đồ thị hàm số đến góc tọa độ O bằng 2 lần khoảng cách từ điểm cực tiểu của đồ thị hàm số đến góc tọa độ O. Câu II (2 điểm):  2cos3x.cosx+ 3(1  s in2x)=2 3cos 2 (2 x  ) 1. Giải phương trình : 4 2. Giải phương trình : log 2 (5  2 x)  log 2 (5  2 x).log 2 x 1 (5  2 x)  log 2 (2 x  5) 2  log 2 (2 x  1).log 2 (5  2 x) 1 2   tan( x  ) 6 4 dx Câu III (1 điểm): I  Tính tích phân : cos2x 0 Câu IV (1 điểm): Cho hình chóp S.ABCD có đáy là hình vuông cạnh a , SA vuông góc với đáy và SA=a .Gọi M,N lần lượt là trung điểm của SB và SD;I là giao điểm của SD và mặt phẳng (AMN). Chứng minh SD vuông góc với AI và tính thể tích khối chóp MBAI. Câu V (1 điểm): Cho x,y,z là ba số thực dương có tổng bằng 3.Tìm giá trị nhỏ nhất của biểu thức P  3( x 2  y 2  z 2 )  2 xyz . B. PHẦN TỰ CHỌN (3 điểm): Thí sinh chỉ được chọn một trong hai phàn (phần 1 hoặc 2) 1.Theo chương trình chuẩn: Câu VIa (2 điểm): 1. Trong mặt phẳng với hệ toạ đ ộ Oxy cho điểm C(2;-5 ) và đường thẳng  : 3 x  4 y  4  0 . Tìm trên  hai điểm A và B đối xứng nhau qua I(2;5/2) sao cho diện tích tam giác ABC bằng15. 2. Trong không gian với hệ toạ độ Oxyz cho mặt cầu ( S ) : x 2  y 2  z 2  2 x  6 y  4 z  2  0 .  Viết phương trình mặt phẳng (P) song song với giá của véc tơ v (1;6; 2) , vuông góc với mặt phẳng ( ) : x  4 y  z  11  0 và tiếp xúc với (S). Câu VIIa(1 điểm): Tìm hệ số của x 4 trong khai triển Niutơn của biểu thức : P  (1  2 x  3 x 2 )10
  2. 2.Theo chương trình nâng cao: Câu VIb (2 điểm): x2 y 2   1 và hai điểm A(3;-2) , B(-3;2) . 1.Trong mặt phẳng với hệ toạ độ Oxy cho elíp ( E ) : 9 4 Tìm trên (E) điểm C có hoành độ và tung độ dương sao cho tam giác ABC có diện tích lớn nhất. 2.Trong không gian với hệ toạ độ Oxyz cho mặt cầu ( S ) : x 2  y 2  z 2  2 x  6 y  4 z  2  0 .  Viết phương trình mặt phẳng (P) song song với giá của véc tơ v (1;6; 2) , vuông góc với mặt phẳng ( ) : x  4 y  z  11  0 và tiếp xúc với (S). Câu VIIb (1 điểm): 2 1 22 2 2n n 121 0 C  Cn  Cn  ...  Cn  Tìm số nguyên dương n sao cho thoả mãn n n 1 n 1 2 3 -------------------------------------------------------HẾT-------------------------------------------------------- Cán bộ coi thi không g ải thích gì thêm Họ tên thí sinh:.................................................... Số báo danh:..............................
  3. ĐÁP ÁN VÀ THANG ĐIỂM NỘI DUNG Điêm Câu 2. Ta có y  3 x  6mx  3(m 2  1) , 2 Để hàm số có cực trị thì PT y ,  0 có 2 nghiệm phân biệt 05  x 2  2mx  m 2  1  0 có 2 nhiệm phân biệt I    1  0, m Cực đại của đồ thị hàm số là A(m-1;2-2m) và cực tiểu của đồ thị hàm số 025 là B(m+1;-2-2m)  m  3  2 2 Theo giả thiết ta có OA  2OB  m 2  6m  1  0   025  m  3  2 2  Vậy có 2 giá trị của m là m  3  2 2 và m  3  2 2 . 1.   PT  cos4x+cos2x+ 3(1  sin 2 x )  3 1  cos(4x+ )  05 2   cos4x+ 3 sin 4 x  cos2x+ 3 sin 2 x  0    sin(4 x  )  sin(2 x  )  0 6 6     x   18  k 3  05  2 sin(3 x  ).cosx=0    x=   k 6 2  II    Vậy PT có hai nghiệm x   k và x    k . 2 18 3  1 5  x 2. 2. ĐK :  2 x  0  05 Với ĐK trên PT đã cho tương đương với log 2 (5  2 x ) log 2 (5  2 x )  2  2 log 2 (5  2 x)  2 log 2 (5  2 x) log 2 (2 x  1) 2 log 2 (2 x  1) 1  x  4  log 2 (2 x  1)  1  1    log 2 (5  2 x )  2 log 2 (2 x  1)   x   x  2 025  2  log 2 (5  2 x )  0 x  2     Kết hợp với ĐK trên PT đã cho có 3 nghiệm x=-1/4 , x=1/2 và x=2. 025
  4. III    tan( x  ) 6 6 2 025 4 dx   tan x  1 dx I   (t anx+1) 2 cos2x 0 0 1 dx  (tan 2 x  1)dx t  t anx  dt= Đặt cos 2 x 05 x 0t 0  1 x t  6 3 1 1 3 1 3 1 3 dt 025 I    Suy ra . 2 (t  1) t  10 2 0 IV 05  AM  BC , ( BC  SA, BC  AB ) Ta có  AM  SC (1)   AM  SB , (SA  AB ) Tương tự ta có AN  SC (2) Từ (1) và (2) suy ra AI  SC Vẽ IH song song với BC cắt SB tại H. Khi đó IH vuông góc với (AMB) 1 Suy ra VABMI  S ABM .IH 3 a2 Ta có S ABM  05 4 SA2 a2 IH SI SI .SC 1 1 1   2 2   IH  BC  a 2 2 2 SA  AC a  2a BC SC SC 3 3 3 V 2 3 1a a a Vậy VABMI   3 4 3 36
  5. Ta c ó: P  3  ( x  y  z )2  2( xy  yz  zx)   2 xyz   025  3 9  2( xy  yz  zx)   2 xyz  27  6 x( y  z )  2 yz ( x  3) ( y  z )2  27  6 x(3  x )  ( x  3) 2 025 1  ( x 3  15 x 2  27 x  27) 2 Xét hàm số f ( x )   x 3  15 x 2  27 x  27 , với 0
  6. 025 Vậy hệ số của x 4 là: C10 24  C10C3 223  C10C22 32  8085 . 4 3 1 2 VIIb 1. Ta có PT đường thẳng AB:2x+3y=0 x2 y2 Gọi C(x;y) với x>0,y>0.Khi đó ta có   1 và diện tích tam giác ABC 05 9 4 là 1 85 85 x y S ABC  AB.d (C  AB )  2x  3 y  3  2 13 3 4 2 13 85  x 2 y 2  170 3 2    3 13  9 4 13 05  x2 y2   9  4  1 x  3 2 32   . Vậy C ( ; 2) . Dấu bằng xảy ra khi  2 2 xy  y  2  3 2  Xét khai triển (1  x )n  Cn  Cn x  Cn x 2  ...  Cnn x n 0 1 2 Lấy tích phân 2 vế cân từ 0 đến 2 , ta được: 05 3n 1  1 2n 1 n 22 1 23 3 0  2Cn  Cn  Cn  ...  Cn n 1 n 1 2 3 2n n 3n 1  1 121 3n 1  1 2 1 22 2 0 C  C  C  ...  Cn    n 2n 3n n 1 2(n  1) n  1 2(n  1)  3n 1  243  n  4 05 Vậy n=4.
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
113=>2