
Đề tài " Almost all cocycles over any hyperbolic system have nonvanishing Lyapunov exponents "
49
lượt xem 8
download
lượt xem 8
download

We prove that for any s 0 the majority of C s linear cocycles over any hyperbolic (uniformly or not) ergodic transformation exhibit some nonzero Lyapunov exponent: this is true for an open dense subset of cocycles and, actually, vanishing Lyapunov exponents correspond to codimension-∞. This open dense subset is described in terms of a geometric condition involving the behavior of the cocycle over certain heteroclinic orbits of the transformation.
Chủ đề:
Bình luận(0) Đăng nhập để gửi bình luận!

CÓ THỂ BẠN MUỐN DOWNLOAD