intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Đề thi giữa học kì 1 môn Toán lớp 9 năm 2021-2022 có đáp án - Trường THCS TT Trâu Quỳ

Chia sẻ: _ _ | Ngày: | Loại File: DOC | Số trang:4

17
lượt xem
2
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Để đạt kết quả cao trong kì thi sắp tới, các em có thể tham khảo và tải về "Đề thi giữa học kì 1 môn Toán lớp 9 năm 2021-2022 có đáp án - Trường THCS TT Trâu Quỳ" được TaiLieu.VN chia sẻ dưới đây để có thêm tư liệu ôn tập, luyện tập giải đề thi nhanh và chính xác giúp các em tự tin đạt điểm cao trong kì thi này. Chúc các em thi tốt!

Chủ đề:
Lưu

Nội dung Text: Đề thi giữa học kì 1 môn Toán lớp 9 năm 2021-2022 có đáp án - Trường THCS TT Trâu Quỳ

  1. ỦY BAN NHÂN DÂN HUYỆN GIA LÂM ĐỀ KIỂM TRA CUÔI HỌC KÌ I TRƯỜNG THCS TT TRÂU QUỲ Môn: Toán . Khối 9 Năm học 2021 – 2022 Tiết theo PPCT : 35( Đ); 35 (H) Thời gian: 90 phút Đề chính thức x +1 x−2 1 Bài 1 (2,5 điểm) Cho biểu thức A = và B = + ( với x > 0; x ≠ 1) x −1 x+2 x x +2 a) Tính giá trị biểu thức A khi x = 9. x −1 b) Chứng minh B = . x c) Tìm giá trị của x để A.B = 2 − x . Bài 2 (2,5 điểm) Cho đường thẳng ( d1 ) : y = − x + 2 và ( d 2 ) : y = 2 x − 4 . a) Vẽ hai đường thẳng ( d1 ) , ( d 2 ) trên cùng một mặt phẳng tọa độ. b) Tìm toạ độ giao điểm A của hai đường thẳng trên. c) Gọi B là giao điểm của đường thẳng ( d1) với trục tung, C là giao điểm của đường thẳng ( d2) với trục tung. Tính diện tích ABC ( đơn vị trên các trục tọa độ là centimet ). Bài 3 (1 điểm). Khi tia nắng mặt trời tạo với mặt đất một góc 52 thì cột cờ ở sân trường có bóng trên mặt đất đo được là 3,6 m ( hình vẽ bên). Tính chiều cao của cột cờ.( Làm tròn đến chữ số thập phân thứ nhất) 520 3,6 m Bài 4. (3điểm) Cho nửa đường tròn (O;R) đường kính AB. Kẻ các tiếp tuyến Ax, By trên nửa mặt phẳng bờ AB có chứa nửa đường tròn ( O;R). Trên nửa đường tròn (O) lấy điểm M khác A,B.Từ M vẽ tiếp tuyến với nửa đường tròn cắt Ax, By theo thứ tự ở C và D. a) Chứng minh: OD BM b) AM cắt By tại K. Chứng minh : AM. AK = 4R2 c) AM cắt OC tại E, BM cắt OD tại F, AD cắt BC tại I. Chứng minh E, F, I thẳng hàng,. Bài 5 (1 điểm) a)Giải phương trình: 3 5 + x − x = 5 b) Cho x > 1 và y > 1. Tìm giá trị nhỏ nhất của biểu thức: x2 y2 P= + y −1 x −1
  2. …………………..Hết…………………… HƯỚNG DẪN CHẤM ĐỀ KIỂM TRA THI HỌC KỲ I TOÁN 9 – Năm học 2021 – 2022 Bài Đáp án Biểu Ghi chú điểm 1 a)Thay x = 9 (thỏa mãn đkxđ) vào biểu thức A ta có: 0.5 đ Thiếu tmđk – 2,5đ trừ 0,25đ 9 +1 3 +1 4 0,25đ A= = = =2 9 −1 3 −1 2 0,25đ Vậy A = 2 khi x = 9 x −1 1.25 đ b) Chứng minh B = Thiếu đk trừ x 0,25đ Mỗi bước đúng chấm 0.25 đ Thiếu KL trừ 0.25đ x +1 0.75 đ Thiếu đk trừ c) Với x > 0; x 1 ta có: A . B = 0,25đ x Để A.B = 2 − x Đưa về được phương trình x − x +1 = 0 0,25đ Lập luận VT > 0 với mọi x thuộc ĐKXĐ 0,25đ Thiếu KL trừ KL ko có x t/m đề bài 0,25đ 0,25đ 2 a) Vẽ 2 đồ thị đúng 2,5đ 1 - Nếu thiếu O, x, y thì không chấm đồ thị. - Nếu thiếu O hoặc x hoặc y và có ghi số thì chấm trọn điểm. b) Xác định tọa độ giao điểm của (d1) và (d2) 0,5đ
  3. Xét phương trình hoành độ giao điểm của (d1) và (d2) : - x + 2 = 2x - 4 0.25đ Viết sai hoặc - x – 2x = - 4 – 2 thiếu đơn vị - - 3x = - 6 x = 2 . 0,25đ Thay x = 2 vào ( d1) ta có y = - 2 + 2 = 0 Vậy toạ độ giao điểm của hai đường thẳng là ( 2; 0) . 0,25đ c) Tính chu vi và diện tích 0,1đ Xác định tọa độ A( 2 ; 0) ; B(0 ;2) : C ( -4;0) 0,25đ Tính được cạnh BC và đường cao AO 0.25 Tính được diện tích tam giác ABC bằng 3 (cm2) 0,5đ 3 - Hs không vẽ (1đ) hình hoặc vẽ hình sai không chấm toàn bài. - Hs thiếu đơn vị trừ 0,25đ. +) Gọi chiều cao cột cờ là độ dài AB , 0,25đ Gọi độ dài của bóng cột cờ là đoạn AC .  Góc ACB là góc tạo bởi tia sáng mặt trời với mặt đất +) Xét tam giác ABC vuông tại A ta có 0,5đ AB = AC.tanC = 3, 6.tan52 4, 6 +) Vậy chiều cao cột cờ xấp xỉ 4, 6 m. 0,25đ 4 Vẽ hình đúng đến câu a 0,25đ Thiếu ký hiệu ( 3đ) góc từ 2 ký hiệu trở lên trừ 0,25đ) a) Xét (O, R ) có By; Ax, CD là các tiếp tuyến tại B;A; M cắt nahu tại 0,25đ C; D  DB = DM; OD = OM  O ; D cách đều B; M 0,25đ  OD là đường trung trực của BM 0,25đ b)Chứng minh : AK . AM = 4R2 1đ K ∆ABM nội tiếp đường tròn (O) đường kính AB nên 0,25đ ∆ABM vuông tại M . BM ⊥ AK D Vì BK là tiếp tuyến của nửa (O) nên BK AB 0,25đ M C Xét ABK vuông tại B , đường cao BM I F 0,25đ E => AK . AM = AB 2 (hệ thức) A H O B
  4. Có AB = 2 R (gt) AK . AM = ( 2 R ) = 4 R 2 2 2 Vậy : AK.AM = 4R 0,25đ 3. E,F, I thẳng hàng 1đ K +)Nối MI cắt Ab tại H. C/m được MH // AC//BD 0,25đ 0.25 +) C/m được I là trung điểm của MH 0.25 + C/m được E, F là trung điểm của AM và BM D M + Lập luận được I; E; F thẳng hàng 0.25 C I E F A H O B 5 a) x + 5 = ( x + 5 )3 ( x + 5 ) ( x2 + 10x + 24 ) = 0 Tìm thiếu từ ( x + 5).( x+4).(x+6) = 0 0,25đ 1 đến 2 1 2 3 nghiệm trừ Tìm được đúng x = -5; x = -4; x = -6 0,25đ 0,25đ b)Áp dụng BĐT Cô si Thiếu lập x2 y2 x 2 y2 0,25đ luận để P= + 2 . x2/ y- 1; y −1 x −1 y −1 x −1 y2/ x – 1 x2 1 y2 1 dương trừ Mà = x −1 + + 2 4; = y −1+ + 2 4; x −1 x −1 y −1 y −1 0,25đ P 8 Dấu “=” xảy ra khi x = y = 2 0,25đ Vậy giá trị nhỏ nhất của P là 8 khi x = y = 2 Ghi chú: Bài 3;4 : chỉ chấm điểm khi có hình vẽ đúng - Mọi cách giải khác mà đúng và phù hợp đều ghi điểm tối đa - Điểm toàn bài được làm tròn một chữ số thập phân K theo nguyên tắc làm tròn số ………………Hết…………………… D M C I E F A H O B
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
732=>0