Đề thi thử đại học lần thứ nhất khối A Môn: Toán - Trường THPT Trần Hưng Đạo
lượt xem 46
download
Download
Vui lòng tải xuống để xem tài liệu đầy đủ
Tham khảo tài liệu 'đề thi thử đại học lần thứ nhất khối a môn: toán - trường thpt trần hưng đạo', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề thi thử đại học lần thứ nhất khối A Môn: Toán - Trường THPT Trần Hưng Đạo
- Së GD & §T Hng Yªn ®Ò thi thö ®¹i häc lÇn thø nhÊt khèi A Trêng THPT TrÇn Hng §¹o M«n: To¸n Thêi gian: 180 phót I.PhÇn chung cho tÊt c¶ thÝ sinh (7 ®iÓm) 2x 1 C©u I (2 ®iÓm). Cho hµm sè y cã ®å thÞ lµ (C) x2 1.Kh¶o s¸t sù biÕn thiªn vµ vÏ ®å thÞ cña hµm sè 2.Chøng minh ®êng th¼ng d: y = -x + m lu«n lu«n c¾t ®å thÞ (C) t¹i hai ®iÓm ph©n biÖt A, B. T×m m ®Ó ®o¹n AB cã ®é dµi nhá nhÊt. C©u II (2 ®iÓm) 1.Gi¶i ph¬ng tr×nh 9sinx + 6cosx – 3sin2x + cos2x = 8 log 2 x log 2 x 2 3 5 (log 4 x 2 3) 2.Gi¶i bÊt ph¬ng tr×nh 2 dx C©u III (1 ®iÓm). T×m nguyªn hµm I sin x. cos 5 x 3 C©u IV (1 ®iÓm). Cho l¨ng trô tam gi¸c ABC.A1B1C1 cã tÊt c¶ c¸c c¹nh b»ng a, gãc t¹o bëi c¹nh bªn vµ mÆt ph¼ng ®¸y b»ng 300. H×nh chiÕu H cña ®iÓm A trªn mÆt ph¼ng (A1B1C1) thuéc ®êng th¼ng B1C1. TÝnh kho¶ng c¸ch gi÷a hai ®êng th¼ng AA1 vµ B1C1 theo a. C©u V (1 ®iÓm). Cho a, b, c 0 và a 2 b 2 c 2 3 . Tìm giá trị nhỏ nhất của biểu thức a3 b3 c3 P 1 b2 1 c2 1 a2 II.PhÇn riªng (3 ®iÓm) 1.Theo ch¬ng tr×nh chuÈn C©u VIa (2 ®iÓm). 1.Trong mÆt ph¼ng víi hÖ täa ®é Oxy cho ®êng trßn (C) cã ph¬ng tr×n h (x-1)2 + (y+2)2 = 9 vµ ®êng th¼ng d: x + y + m = 0. T×m m ®Ó trªn ®êng th¼ng d cã duy nhÊt mét ®iÓm A mµ tõ ®ã kÎ ®îc hai tiÕp tuyÕn AB, AC tíi ®êng trßn (C) (B, C lµ hai tiÕp ®iÓm) sao cho tam gi¸c ABC vu«ng. 2.Trong kh«ng gian víi hÖ täa ®é Oxyz cho ®iÓm A(10; 2; -1) vµ ®êng th¼ng d cã ph¬ng tr×nh x 1 2t y t . LËp ph¬ng tr×nh mÆt ph¼ng (P) ®i qua A, song song víi d vµ kho¶ng c¸ch tõ d tíi (P) lµ z 1 3t lín nhÊt. C©u VIIa (1 ®iÓm). Cã bao nhiªu sè tù nhiªn cã 4 ch÷ sè kh¸c nhau vµ kh¸c 0 mµ trong mçi sè lu«n lu«n cã mÆt hai ch÷ sè ch½n vµ hai ch÷ sè lÎ. 2.Theo ch¬ng tr×nh n©ng cao (3 ®iÓm) C©u VIb (2 ®iÓm) 1.Trong mÆt ph¼ng víi hÖ täa ®é Oxy cho ®êng trßn (C): x2 + y2 - 2x + 4y - 4 = 0 vµ ®êng th¼ng d cã ph¬ng tr×nh x + y + m = 0. T×m m ®Ó trªn ®êng th¼ng d cã duy nhÊt mét ®iÓm A mµ tõ ®ã kÎ ®îc hai tiÕp tuyÕn AB, AC tíi ®êng trßn (C) (B, C lµ hai tiÕp ®iÓm) sao cho tam gi¸c ABC vu«ng . 2.Trong kh«ng gian víi hÖ täa ®é Oxyz cho ®iÓm A(10; 2; -1) vµ ®êng th¼ng d cã ph¬ng x 1 y z 1 tr×nh . LËp ph¬ng tr×nh mÆt ph¼ng (P) ®i qua A, song song víi d vµ kho¶ng c¸ch tõ d 2 1 3 tíi (P) lµ lín nhÊt. C©u VIIb (1 ®iÓm) Cã bao nhiªu sè tù nhiªn cã 5 ch÷ sè kh¸c nhau mµ trong mçi sè lu«n lu«n cã mÆt hai ch÷ sè ch½n vµ ba ch÷ sè lÎ. -HÕt- 1
- ®¸p ¸n ®Ò thi thö ®¹i häc lÇn 1 khèi a – m«n to¸n I.PhÇn dµnh cho tÊt c¶ c¸c thÝ sÝnh C©u §¸p ¸n §iÓ m 1. (1,25 ®iÓm) I a.TX§: D = R\{-2} (2 b.ChiÒu biÕn thiªn ®iÓm) 0,5 +Giíi h¹n: lim y lim y 2; lim y ; lim y x 2 x 2 x x Suy ra ®å thÞ hµm sè cã mét tiÖm cËn ®øng lµ x = -2 vµ mét tiÖm cËn ngang lµ y=2 3 + y' 0 x D ( x 2) 2 0,25 Suy ra hµm sè ®ång biÕn trªn mçi kho¶ng (;2) vµ (2;) +B¶ng biÕn thiªn x -2 y’ + + 0,25 2 y 2 c.§å thÞ: 1 1 §å thÞ c¾t c¸c trôc Oy t¹i ®iÓm (0; ) vµ c¾t trôc Ox t¹i ®iÓm( ;0) 2 2 §å thÞ nhËn ®iÓm (-2;2) lµm t©m ®èi xøng y 0,25 2 -2 O x 2. (0,75 ®iÓm) Hoµnh ®é giao ®iÓm cña ®å thÞ (C ) vµ ®êng th¼ng d lµ nghiÖm cña ph¬ng x 2 2x 1 tr×nh x m 2 0,25 x2 x (4 m) x 1 2m 0 (1) Do (1) cã m 2 1 0 va (2) 2 (4 m).(2) 1 2m 3 0 m nªn ®êng th¼ng d lu«n lu«n c¾t ®å thÞ (C ) t¹i hai ®iÓm ph©n biÖt A, B Ta cã yA = m – xA; yB = m – xB nªn AB2 = (xA – xB)2 + (yA – yB)2 = 2(m2 0,5 2
- + 12) suy ra AB ng¾n nhÊt AB2 nhá nhÊt m = 0. Khi ®ã AB 24 II 1. (1 ®iÓm) (2 Ph¬ng tr×nh ®· cho t¬ng ®¬ng víi 0,5 9sinx + 6cosx – 6sinx.cosx + 1 – 2sin2x = 8 ®iÓm) 6cosx(1 – sinx) – (2sin2x – 9sinx + 7) = 0 6cosx(1 – sinx) – (sinx – 1)(2sinx – 7) = 0 (1-sinx)(6cosx + 2sinx – 7) = 0 0,25 1 sin x 0 6 cos x 2 sin x 7 0 (VN ) 0,25 x k 2 2 2. (1 ®iÓm) x 0 §K: 2 2 log 2 x log 2 x 3 0 BÊt ph¬ng tr×nh ®· cho t¬ng ®¬ng víi 0,5 log 2 x log 2 x 2 3 5 (log 2 x 3) (1) 2 ®Æt t = log2x, BPT (1) t 2 2t 3 5 (t 3) (t 3)(t 1) 5 (t 3) 0,25 t 1 log x 1 t 1 2 t 3 3 t 4 3 log 2 x 4 (t 1)(t 3) 5(t 3) 2 1 0 x 2 VËy BPT ®· cho cã tËp nghiÖm lµ: (0; 1 ] (8;16) 2 8 x 16 III dx dx I 8 3 1 ®iÓm 3 3 2 sin 2 x. cos 2 x sin x. cos x. cos x 0,5 ®Æt tanx = t dx 2t dt ; sin 2 x 2 1 t 2 cos x (t 2 1) 3 dt I 8 dt t3 2t 3 ( ) 1 t 2 t 6 3t 4 3t 2 1 dt t3 3 1 3 1 (t 3 3t t 3 )dt tan 4 x tan 2 x 3 ln tan x C 0,5 2 tan 2 x t 4 2 3
- C©u IV 1 ®iÓm Do AH ( A1 B1C1 ) nªn gãc AA1 H lµ gãc gi÷a AA1 vµ (A1B1C1), theo gi¶ thiÕt th× gãc AA1 H b»ng 300. XÐt tam gi¸c vu«ng AHA1 cã AA1 = a, gãc a3 AA1 H =300 A1 H . Do tam gi¸c A1B1C1 lµ tam gi¸c ®Òu c¹nh a, H 2 a3 thuéc B1C1 vµ A1 H nªn A1H vu«ng gãc víi B1C1. MÆt kh¸c 0,5 2 AH B1C1 nªn B1C1 ( AA1 H ) A B C K A1 C H B1 KÎ ®êng cao HK cña tam gi¸c AA1H th× HK chÝnh lµ kho¶ng c¸ch gi÷a AA1 0,25 vµ B1C1 0,25 A1 H . AH a 3 Ta cã AA1.HK = A1H.AH HK AA1 4 C©u V a3 b3 c3 Ta c ó: P + 3 = b2 c2 a2 1 ®iÓm 2 2 2 1 b 1 c 1 a 3 2 2 b3 b2 1 c2 1 b 6 a a P 2 2 2 1 c 2 2 1 c2 4 2 2 1 b 42 42 2 1 b 0,5 3 2 2 6 6 6 1 a c c a b c 33 33 33 2 1 a2 2 1 a2 4 2 16 2 16 2 16 2 3 3 9 (a 2 b 2 c 2 ) 6 P 2 2 23 2 2 28 9 3 9 3 3 0,5 P 6 3 22 22 22 2 22 Để PMin khi a = b = c = 1 PhÇn riªng. 1.Ban c¬ b¶n C©u 1.( 1 ®iÓm) VIa Tõ ph¬ng tr×nh chÝnh t¾c cña ®êng trßn ta cã t©m I(1; -2), R = 3, tõ A kÎ 2 ®îc 2 tiÕp tuyÕn AB, AC tíi ®êng trßn vµ AB AC => tø gi¸c ABIC lµ h×nh 0,5 ®iÓm vu«ng c¹nh b»ng 3 IA 3 2 4
- m 1 m 5 3 2 m 1 6 m 7 2 0,5 2. (1 ®iÓm) Gäi H lµ h×nh chiÕu cña A trªn d, mÆt ph¼ng (P) ®i qua A vµ (P)//d, khi ®ã kho¶ng c¸ch gi÷a d vµ (P) lµ kho¶ng c¸ch tõ H ®Õn (P). Gi¶ sö ®iÓm I lµ h×nh chiÕu cña H lªn (P), ta cã AH HI => HI lín nhÊt khi 0,5 AI VËy (P) cÇn t×m lµ mÆt ph¼ng ®i qua A vµ nhËn AH lµm vÐc t¬ ph¸p tuyÕn. H d H (1 2t ; t;1 3t ) v× H lµ h×nh chiÕu cña A trªn d nªn AH d AH .u 0 (u (2;1;3) lµ vÐc t¬ chØ ph¬ng cña d) 0,5 H (3;1;4) AH (7;1;5) VËy (P): 7(x – 10) + (y – 2) – 5(z + 1) = 0 7x + y -5z -77 = 0 Tõ gi¶ thiÕt bµi to¸n ta thÊy cã C 42 6 c¸ch chän 2 ch÷ sè ch½n (v× kh«ng cã sè 0,5 C©u VIIa 0)vµ C 52 10 c¸ch chän 2 ch÷ sè lÏ => cã C 52 . C 52 = 60 bé 4 sè tháa m·n bµi 1 to¸n ®iÓm 0,5 Mçi bé 4 sè nh thÕ cã 4! sè ®îc thµnh lËp. VËy cã tÊt c¶ C 42 . C 52 .4! = 1440 sè 2.Ban n©ng cao. C©u 1.( 1 ®iÓm) VIa Tõ ph¬ng tr×nh chÝnh t¾c cña ®êng trßn ta cã t©m I(1; -2), R = 3, tõ A kÎ ®îc 2 2 tiÕp tuyÕn AB, AC tíi ®êng trßn vµ AB AC => tø gi¸c ABIC lµ h×nh vu«ng 0,5 ®iÓm c¹nh b»ng 3 IA 3 2 m 1 m 5 3 2 m 1 6 m 7 2 0,5 2. (1 ®iÓm) Gäi H lµ h×nh chiÕu cña A trªn d, mÆt ph¼ng (P) ®i qua A vµ (P)//d, khi ®ã kho¶ng c¸ch gi÷a d vµ (P) lµ kho¶ng c¸ch tõ H ®Õn (P). Gi¶ sö ®iÓm I lµ h×nh chiÕu cña H lªn (P), ta cã AH HI => HI lín nhÊt khi 0,5 AI VËy (P) cÇn t×m lµ mÆt ph¼ng ®i qua A vµ nhËn AH lµm vÐc t¬ ph¸p tuyÕn. H d H (1 2t ; t;1 3t ) v× H lµ h×nh chiÕu cña A trªn d nªn AH d AH .u 0 (u (2;1;3) lµ vÐc t¬ chØ ph¬ng cña d) 0,5 H (3;1;4) AH (7;1;5) VËy (P): 7(x – 10) + (y – 2) – 5(z + 1) = 0 7x + y -5z -77 = 0 0,5 C©u Tõ gi¶ thiÕt bµi to¸n ta thÊy cã C 52 10 c¸ch chän 2 ch÷ sè ch½n (kÓ c¶ sè cã ch÷ VIIa sè 0 ®øng ®Çu) vµ C 53 =10 c¸ch chän 2 ch÷ sè lÏ => cã C 52 . C 53 = 100 bé 5 sè ®îc 1 chän. ®iÓm 0,5 Mçi bé 5 sè nh thÕ cã 5! sè ®îc thµnh lËp => cã tÊt c¶ C 52 . C 53 .5! = 12000 sè. MÆt kh¸c sè c¸c sè ®îc lËp nh trªn mµ cã ch÷ sè 0 ®øng ®Çu lµ C 4 .C 53 .4! 960 . 1 VËy cã tÊt c¶ 12000 – 960 = 11040 sè tháa m·n bµi to¸n 5
- 6
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đề thi thử Đại học lần 1 (2007-2008)
1 p |
900
|
155
-
Đề thi thử Đại học lần 3 môn Tiếng Anh (Mã đề thi 135) - Trường THPT chuyên Lê Quý Đôn
48 p |
293
|
12
-
Đề thi thử Đại học lần 1 môn Vật lý (Mã đề 069) - Trường THPT Ngô Quyền
6 p |
198
|
6
-
Đề thi thử Đại học lần 4 môn Toán
6 p |
137
|
5
-
Đề thi thử Đại học lần II môn Ngữ văn khối D
1 p |
121
|
3
-
Đề thi thử Đại học lần II năm học 2013-2014 môn Vật lý (Mã đề thi 722) - Trường THPT Lương Thế Vinh
7 p |
155
|
3
-
Đề thi thử Đại học lần IV năm học 2012 môn Vật lý (Mã đề 896) - Trường THPT chuyên Nguyễn Huệ
6 p |
123
|
3
-
Đề thi thử Đại học lần 2 năm 2013-2014 môn Sinh học - Trường THPT chuyên Lý Tự Trọng (Mã đề thi 231)
9 p |
155
|
3
-
Đề thi thử đại học lần III năm học 2011-2012 môn Hóa học (Mã đề 935)
5 p |
111
|
3
-
Đề thi thử Đại học lần 3 năm 2014 môn Toán (khối D) - Trường THPT Hồng Quang
8 p |
140
|
3
-
Đề thi thử Đại học, lần III năm 2014 môn Vật lý (Mã đề 134) - Trường THPT chuyên Hà Tĩnh
6 p |
141
|
2
-
Đề thi thử Đại học lần I năm 2014 môn Vật lý (Mã đề thi 249) - Trường THPT Quỳnh Lưu 3
15 p |
124
|
2
-
Đề thi thử Đại học lần 1 năm học 2013-2014 môn Hóa học (Mã đề thi 001) - Trường THCS, THPT Nguyễn Khuyến
6 p |
144
|
2
-
Đề thi thử Đại học lần 3 năm 2010 môn Sinh học – khối B (Mã đề 157)
4 p |
109
|
2
-
Đề thi thử Đại học lần 1 năm học 2010 - 2011 môn Sinh học - Trường THPT Lê Hồng Phong
8 p |
144
|
2
-
Đề thi thử Đại học lần II môn Ngữ văn khối D - Trường THPT chuyên Lê Quý Đôn
1 p |
132
|
2
-
Đề thi thử Đại học lần II năm học 2013-2014 môn Vật lý (Mã đề thi 132) - Trường THPT chuyên Lê Quý Đôn
7 p |
169
|
2
-
Đề thi thử Đại học lần 2 năm học 2012-2013 môn Hóa học (Mã đề thi 002) - Trường THCS, THPT Nguyễn Khuyến
6 p |
143
|
2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn
