
KỲ THI TUYỂN SINH VÀO LỚP 10 THPT NĂM HỌC 2012 – 2013 Môn thi: TOÁN ĐỀ 11
lượt xem 4
download

Tài liệu tham khảo về KỲ THI TUYỂN SINH VÀO LỚP 10 THPT NĂM HỌC 2012 – 2013 Môn thi: TOÁN ĐỀ 11. Đây là đề thi chính thức của Sở giáo dục và đào tạo trong kỳ thi tuyển sinh vào lớp 10 THPT. Thời gian làm bài là 120 phút không kể thời gian giao đề. Mời các bạn cùng tham khảo.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: KỲ THI TUYỂN SINH VÀO LỚP 10 THPT NĂM HỌC 2012 – 2013 Môn thi: TOÁN ĐỀ 11
- Së Gi¸o dôc vµ ®µo Kú thi tuyÓn sinh líp 10 THPT t¹o N¨m häc 2009-2010 DAK LAK M«n thi: To¸n Thêi gian lµm bµi: 120 phót kh«ng kÓ thêi gian đề 11 giao ®Ò. Ngµy21 th¸ng 06 n¨m 2011 Câu 1(2.0 điểm): x 1 x 1 1) Giải phương trình: 1 2 4 x 2y 2) Giải hệ phương trình: x y 5 Câu 2:(2.0 điểm) 2( x 2) x a) Rút gọn biểu thức: A= với x 0 và x 4. x4 x 2 b) Một hình chữ nhật có chiều dài hơn chiều rộng 2 cm và diện tích của nó là 15 cm2. Tính chiều dài và chiều rộng của hình chữ nhật đó. Câu 3: (2,0 điểm) Cho phương trình: x2- 2x + (m – 3) = 0 (ẩn x) a) Giải phương trình với m = 3. b) Tính giá trị của m, biết phương trình đã cho có hai nghiệm phân biệt x1, x2 và thỏa mãn điều kiện: x12 – 2x2 + x1x2 = - 12 c) Câu 4:(3 điểm) Cho tam giác MNP cân tại M có cậnh đáy nhỏ hơn cạnh bên, nội tiếp đường tròn ( O;R). Tiếp tuyến tại N và P của đường tròn lần lượt cắt tia MP và tia MN tại E và D. a) Chứng minh: NE2 = EP.EM b) Chứng minh tứ giác DEPN kà tứ giác nội tiếp. c) Qua P kẻ đường thẳng vuông góc với MN cắt đường tròn (O) tại K ( K không trùng với P). Chứng minh rằng: MN2 + NK2 = 4R2. Câu 5:(1,0 điểm) 6 4x Tìm giá trị lớn nhất, nhỏ nhất của biểu thức: A = x2 1
- -----------Hết---------- Giải Câu I. x 1 x 1 a, 1 2(x 1) 4 x 1 x 1 Vậy tập nghiệm của phương trình 2 4 S= 1 x 2y x 2y x 10 b, Vậy nghiệm của hệ (x;y) =(10;5) x y 5 2y y 5 y 5 Câu II. a, với x 0 và x 4. 2( x 2) x 2( x 2) x ( x 2) ( x 2)( x 2) Ta có: A 1 ( x 2)( x 2) ( x 2) ( x 2)( x 2) ( x 2)( x 2) b, Gọi chiều rộng của HCN là x (cm); x > 0 Chiều dài của HCN là : x + 2 (cm) Theo bài ra ta có PT: x(x+2) = 15 . Giải ra tìm được :x1 = -5 ( loại ); x2 = 3 ( thỏa mãn ) . Vậy chiều rộng HCN là : 3 cm , chiều dài HCN là: 5 cm. Câu III. a, Với m = 3 Phương trình có dạng : x2 - 2x x ( x 2) 0 x = 0 hoặc x = 2 Vậy tập nghiệm của phương trình S= 0;2 b, Để PT có nghiệm phân biệt x1 ; x2 thì ' 0 4 m 0 m 4 (*) . Theo Vi-et : x1 x2 2 (1) x1 x2 m 3 (2) Theo bài: x21 -2x2 + x1x2 = - 12 => x1(x1 + x2 ) -2x2 =-12 2x1 - 2x2 = -12 ) ( Theo (1) ) M hay x1 - x2 = -6 . Kết hợp (1) x1 = -2 ; x2 = 4 Thay vào (2) được : m - 3 = -8 m = -5 ( TM (*) ) O K H F N P I
- Câu IV . a, NEM đồng dạng PEN ( g-g) NE ME NE 2 ME.PE EP NE b, MNP MPN ( do tam giác MNP cân tại M ) PNE NPD(cùng NMP) => DNE DPE . Hai điểm N; P cùng thuộc nửa mp bờ DE và cùng nhìn DE dưới 1 góc bằng nhau nên tứ giác DNPE nội tiếp . c, MPF đồng dạng MIP ( g - g ) MP MI MP 2 MF .MI (1) . MF MP MNI đồng dạng NIF ( g-g ) NI IF NI 2 MI .IF(2) MI NI Từ (1) và (2) : MP2 + NI2 = MI.( MF + IF ) = MI2 = 4R2 ( 3). NMI KPN ( cùng phụ HNP ) => KPN NPI => NK = NI ( 4 ) Do tam giác MNP cân tại M => MN = MP ( 5) Từ (3) (4) (5) suy ra đpcm . Câu V . 6 8x k 2 kx 2 8 x k 6 0 (1) x 1 +) k=0 . Phương trình (1) có dạng 8x-6=0 x= 2 3 +) k 0 thì (1) phải có nghiệm ' = 16 - k (k - 6) 0 2 k 8 . Max k = 8 x = 1 . 2 Min k = -2 x = 2 .

CÓ THỂ BẠN MUỐN DOWNLOAD
-
Kỳ thi tuyển sinh vào lớp 10 môn toán THPT năm học 2013 - 2014 - Sở giáo dục đào tạo Nam Định
3 p |
662 |
167
-
Kỳ thi tuyển sinh vào lớp 10 môn toán THPT năm học 2013 - 2014 - Trường chuyên Lê Hồng Phong Sở giáo dục đào tạo TP.HCM
1 p |
555 |
114
-
Kỳ thi tuyển sinh vào lớp 10 môn toán THPT năm học 2013 - 2014 - Sở giáo dục đào tạo Nghệ An
3 p |
167 |
27
-
Kỳ thi tuyển sinh vào lớp 10 môn toán THPT năm học 2013 - 2014 - Sở giáo dục đào tạo tỉnh Đồng Nai
2 p |
178 |
23
-
Kỳ thi tuyển sinh vào lớp 10 môn toán THPT năm học 2013 - 2014 - Sở giáo dục đào tạo tỉnh Lào Cai
4 p |
219 |
21
-
Kỳ thi tuyển sinh vào lớp 10 môn toán THPT năm học 2013 - 2014 - Sở giáo dục đào tạo Hải Phòng
8 p |
191 |
15
-
Kỳ thi tuyển sinh vào lớp 10 môn toán THPT năm học 2013 - 2014 - Sở giáo dục đào tạo Long An
4 p |
146 |
15
-
Kỳ thi tuyển sinh vào lớp 10 môn toán THPT năm học 2013 - 2014 - Sở giáo dục đào tạo Lạng Sơn
3 p |
127 |
12
-
Kỳ thi tuyển sinh vào lớp 10 môn toán THPT năm học 2013 - 2014 - Sở giáo dục đào tạo Lâm Đồng
3 p |
146 |
9
-
Kỳ thi tuyển sinh vào lớp 10 môn toán THPT năm học 2013 - 2014 - Sở giáo dục đào tạo Hà Tĩnh
1 p |
165 |
8
-
Kỳ thi tuyển sinh vào lớp 10 THPT năm học 2013 - 2014 môn toán - Sở giáo dục đào tạo Thái Bình
1 p |
126 |
6
-
Kỳ thi tuyển sinh vào lớp 10 THPT chuyên năm học 2013 - 2014 môn toán - Sở giáo dục đào tạo Quảng Nam
2 p |
115 |
6
-
Kỳ thi tuyển sinh vào lớp 10 THPT năm học 2013 - 2014 môn toán - Sở giáo dục đào tạo Quảng Ngãi
1 p |
121 |
6
-
Kỳ thi tuyển sinh vào lớp 10 THPT chuyên năm học 2013 - 2014 môn toán - Sở giáo dục đào tạo Đăk Lăk
4 p |
85 |
5
-
Kỳ thi tuyển sinh vào lớp 10 THPT năm học 2013 - 2014 môn toán - Sở giáo dục đào tạo Quảng Ninh
2 p |
67 |
2
-
Kỳ thi tuyển sinh vào lớp 10 THPT năm học 2013 - 2014 môn toán - Sở giáo dục đào tạo Quảng Bình
1 p |
88 |
2
-
Kỳ thi tuyển sinh vào lớp 10 THPT năm học 2013 - 2014 môn toán - Sở giáo dục đào tạo Ninh Thuận
1 p |
81 |
2
-
Đề thi tuyển sinh vào lớp 10 THPT không chuyên môn Toán năm học 2018-2019
6 p |
61 |
1


Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn
