
Luyện thi Đại học Kit 1 - Môn Toán: Tính đơn điệu của hàm số (Bài tập tự luyện)
lượt xem 13
download

Luyện thi Đại học Kit 1 - Môn Toán: Tính đơn điệu của hàm số (Bài tập tự luyện) của thầy Lê Bá Trần Phương giúp các bạn nắm vững những kiến thức về tính đơn điệu của hàm số. Mời các bạn tham khảo!
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Luyện thi Đại học Kit 1 - Môn Toán: Tính đơn điệu của hàm số (Bài tập tự luyện)
- Khóa học LTĐH KIT-1: Môn Toán (Thầy Lê Bá Trần Phương) Tính đơn điệu của hàm số TÍNH ĐƠN ĐIỆU CỦA HÀM SỐ BÀI TẬP TỰ LUYỆN Giáo viên: LÊ BÁ TRẦN PHƯƠNG Các bài tập trong tài liệu này được biên soạn kèm theo bài giảng Tính đơn điệu của hàm số thuộc khóa học Luyện thi đại học KIT-1: Môn Toán (Thầy Lê Bá Trần Phương) tại website Hocmai.vn để giúp các Bạn kiểm tra, củng cố lại các kiến thức được giáo viên truyền đạt trong bài giảng Tính đơn điệu của hàm số. Để sử dụng hiệu quả, Bạn cần học trước Bài giảng sau đó làm đầy đủ các bài tập trong tài liệu trong tài liệu này. Bài tập có hướng dẫn giải: Bài 1. Cho hàm số y = x3 + (1 − 2m) x 2 + (2 − m) x + m + 2 (C). Tìm m để hàm đồng biến trên ( 0; +∞ ) Bài 2. Cho họ đường cong bậc ba (Cm) có phương trình là y = − x 3 + mx 2 − m . Định m để: a. hàm số đồng biến trong (1, 2). b. hàm số nghịch biến trong (0, +∞). 1 1 3sin 2a Bài 3. Cho hàm số f ( x) = x 3 − (sin a + cosa) x 2 + x . Tìm a để hàm số luôn đồng biến. 3 2 4 2 x 2 − 3x + m Bài 4. Cho hàm số y = . Với nhứng giá trị nào của m thì hàm số đã cho là đồng biến trên x −1 khoảng (3; +∞) x2 Bài 5. Chứng minh rằng với x > 0, ta có: e x > 1 + x + 2 Bài 6. CMR: f ( x) = x 4 + px + q ≥ 0, ∀x ∈ R ⇔ 256q 3 ≥ 27 p 4 Bài 7. Cho ( Cm ) : y = f ( x, m ) = 2 x3 − 3 ( 2m − 1) x 2 + 3 ( m + 2 ) x − 4 . Tìm m để hàm số đồng biến trên [2;+∞). Bài 8. Cho hàm số y = − x3 − 3x2 + mx + 4, trong đó m là tham số thực. Tìm tất cả các giá trị của tham số m để hàm số đã cho nghịch biến trên khoảng (0 ; + ∞). mx − 1 Bài 9. Cho hàm số y = (1). Với m nào hàm đồng biến, nghịch biến, không đổi? x−m Bài tập không có hướng dẫn giải: mx + 4 Bài 1. Cho hàm số y = , trong đó m là tham số. x+m Với giá trị nào của m thì hàm số nghịch biến trên khoảng (−∞ ; 1). Hocmai.vn – Ngôi trường chung của học trò Việt Tổng đài tư vấn: 1900 58-58-12 - Trang | 1 -
- Khóa học LTĐH KIT-1: Môn Toán (Thầy Lê Bá Trần Phương) Tính đơn điệu của hàm số Bài 2. Cho hàm số y = x3 + 3x2 – mx – 4, trong đó m là tham số. Với giá trị nào của m thì hàm số nghịch biến trên khoảng (−∞ ; 0). mx − 1 Bài 3. Cho hàm số : y = (Cm) x +1 Xác định m để hàm số nghịch biến trên từng khoảng xác định của nó. Bài 4. Cho hàm số y = x3 − 3 ( m + 1) x 2 + 3 ( m + 1) x + 1 . Định m để: a. àm số luôn đồng biến trên R. b. Hàm số luôn đồng biến trên khoảng ( 2; +∞ ) . x3 mx 2 Bài 5. Xác định m để hàm số y = − − 2 x + 1. 3 2 a. Đồng biến trên R. b. Đồng biến trên (1; +∞ ) . Bài 6. Cho hàm số y = x3 − 3 ( 2m + 1) x 2 + (12m + 5 ) x + 2 . a. Định m để hàm số đồng biến trên khoảng ( 2; +∞ ) . b. Định m để hàm số nghịch biến trên khoảng ( −∞; −1) . mx 2 + 6 x − 2 Bài 7.. Cho hàm số y = . x+2 Định m để hàm số nghịch biến trên [1; +∞ ) . ( ) Bài 8. Cho hàm số: y = mx + 1 − m x + 2m . 2 2x − 3 Tìm m để hàm số đồng biến trên [4, +∞). Giáo viên: Lê Bá Trần Phương Nguồn : Hocmai.vn Hocmai.vn – Ngôi trường chung của học trò Việt Tổng đài tư vấn: 1900 58-58-12 - Trang | 2 -

CÓ THỂ BẠN MUỐN DOWNLOAD
-
Luyện thi Đại học Kit 1 - Môn Hóa học: Phương pháp đếm nhanh đồng phân (Bài tập tự luyện)
2 p |
219 |
48
-
Luyện thi Đại học Kit 1 - Môn Toán Bài 24: Hệ phương trình (Phần 2)
1 p |
240 |
44
-
Luyện thi Đại học Kit 1 - Môn Toán Bài 2: Phương trình chứa căn (Phần 2)
14 p |
200 |
38
-
Luyện thi Đại học Kit 1 - Môn Toán Bài 23: Hệ phương trình (Phần 1)
1 p |
122 |
19
-
Luyện thi Đại học Kit 1 - Môn Toán: Các bài toán cơ bản về cực trị hàm bậc ba
1 p |
106 |
15
-
Luyện thi Đại học Kit 1 - Môn Toán: Thể tích khối lăng trụ Phần 02 (Tài liệu bài giảng)
1 p |
137 |
15
-
Luyện thi Đại học Kit 1 - Môn Toán: Thể tích khối chóp Phần 04 (Tài liệu bài giảng)
1 p |
116 |
12
-
Luyện thi Đại học Kit 1 - Môn Toán: Thể tích khối lăng trụ Phần 01 (Tài liệu bài giảng)
1 p |
109 |
10
-
Luyện thi Đại học Kit 1 - Môn Toán: Các vấn đề về góc (Phần II)
1 p |
134 |
9
-
Luyện thi Đại học Kit 1 - Môn Toán: Các vấn đề về khoảng cách Phần 05 (Bài tập tự luyện)
1 p |
119 |
9
-
Luyện thi Đại học Kit 1 - Môn Toán: Mặt cầu Phần 02 (Tài liệu bài giảng)
1 p |
107 |
9
-
Luyện thi Đại học Kit 1 - Môn Toán: Thể tích khối chóp Phần 01 (Tài liệu bài giảng)
1 p |
118 |
9
-
Luyện thi Đại học Kit 1 - Môn Toán Bài 9: Giải phương trình mũ bằng phương pháp nhóm thừa số chung (Tài liệu bài giảng)
1 p |
124 |
8
-
Luyện thi Đại học Kit 1 - Môn Toán: Thể tích khối lăng trụ Phần 01 (Bài tập tự luyện)
1 p |
109 |
8
-
Luyện thi Đại học Kit 1 - Môn Toán: Các vấn đề về khoảng cách Phần 06 (Tài liệu bài giảng)
1 p |
70 |
7
-
Luyện thi Đại học Kit 1 - Môn Toán: Các vấn đề về khoảng cách Phần 03 (Tài liệu bài giảng)
1 p |
88 |
7
-
Luyện thi Đại học Kit 1 - Môn Toán: Các vấn đề về khoảng cách Phần 04 (Tài liệu bài giảng)
1 p |
97 |
6
-
Luyện thi Đại học Kit 1 - Môn Toán: Các vấn đề về khoảng cách Phần 05 (Tài liệu bài giảng)
1 p |
87 |
4


Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn
