THỬ SỨC TRƯỚC KỲ THI SỐ 3
lượt xem 51
download
Download
Vui lòng tải xuống để xem tài liệu đầy đủ
Tham khảo tài liệu 'thử sức trước kỳ thi số 3', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: THỬ SỨC TRƯỚC KỲ THI SỐ 3
- THỬ SỨC TRƯỚC KÌ THI THTT SỐ 402-12/2010 ĐỀ SỐ 03 Thời gian làm bài 180 phút PHẦN CHUNG Câu I: Cho hàm số: y x 4 2 m 1 x 2 2m 1 . 1) Khảo sát sự biến thiên và vẽ đồ thị hàm số khi m = 1. 2) Xác định m để đồ thị hàm số cắt trục hoành tại 4 điểm phân biệt có hoành độ lập thành cấp số cộng. Câu II: 1) Giải phương trình: 2cos 2 2x cos 2x.sin 3x 3sin 2 2x 3 6x 2 3xy x y 1 2) Giải hệ phương trình: 2 2 x y 1. Câu III: 2 x Cho hàm số f x A.3 B . Tìm các số A, B sao cho f ' 0 2 và f x dx 12 1 Câu IV: Trong mặt phẳng P cho hình vuông ABCD có cạnh bằng a. S là một điểm bất kì nằm trên đường thẳng At vuông góc với mặt phẳng P tại A. Tính thể tích khối cầu ngoại tiếp hình chóp S.ABCD khi SA = 2a. Câu V: x sin x 2cos 2 trên đoạn 0; . Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số f x 2 x cos x 2sin 2 PHẦN RIÊNG Thí sinh chỉ được làm một trong hai phần (phần A hoặc phần B) A. Theo chương trình chuẩn Câu VI.a: 1) Trong mặt phẳng tọa độ (Oxy) cho điểm A 1;1 và đường thẳng (d) có phương trình 4x 3y 12 0 . Gọi B, C là giao điểm của (d) với các trục Ox, Oy. Xác định tọa độ trực tâm của tam giác ABC. 2) Trong không gian với hệ tọa độ Oxyz, từ điểm P 2;3; 5 hạ các đường thẳng vuông góc với các mặt phẳng tọa độ. Viết phương trình mặt phẳng đi qua chân các đường vuông góc đó. Câu VII.a: www.MATHVN.com --- www.MATHVN.com --- www.MATHVN.com
- 24 5 5 Chứng minh rằng số phức z 1 cos isin có phần ảo bằng 0. 6 6 B. Theo chương trình nâng cao Câu VI.b: 1) Cho đường tròn C : x 2 y 2 6x 2y 1 0 . Viết phương trình đường thẳng d song song với đường thẳng x 2y 4 0 và cắt C theo một dây cung có độ dài bằng 4. 2) Trong không gian với hệ tọa độ Oxyz cho hai đường thẳng x 1 y 1 z x 1 y 2 z và d 2 : . d1 : 2 1 1 1 2 1 Viết phương trình mặt phẳng (P) song song với mặt phẳng Q : x y 2z 3 0 sao cho (P) cắt d1, d2 theo một đoạn thẳng có độ dài nhỏ nhất. Câu VII.b: 4 x y1 3.4 2y 1 2 Giải hệ phương trình x 3y 2 log 4 3 HƯỚNG DẪN GIẢI VÀ ĐÁP SỐ PHẦN CHUNG Câu I: 1) Tự giải 2) Giao điểm với trục hoành x 4 2 m 1 x 2 2m 1 0 (*) Đặt t = x2, ta có phương trình: t 2 2 m 1 t 2m 1 0 (**) (*) có 4 nghiệm (**) có 2 nghiệm dương phân biệt m2 0 Δ ' 0 1 S 0 2 m 1 0 m , m 0 2 P0 2m 1 0 2 2 Với điều kiện này (**) có nghiệm t1 x1 ; t 2 x 2 (t2 > t1) 4 nghiệm (*): x 2 , x1 , x1 , x 2 Dãy này lập thành cấp số cộng khi: x 2 x1 x1 x1 x 2 3x1 Đặt x1 α x 2 3α m4 2 x1 x 2 10α 2 2 2 2 m 1 10α 2 m 1 2 2 2 2m 1 9 9m 32m 16 0 4 4 4 5 m x 1 x 2 9α 2m 1 9α 9 4 Vậy m = 4 hoặc m 9 Câu II: 1) www.MATHVN.com --- www.MATHVN.com --- www.MATHVN.com
- 2 cos 2 2x cos 2x.sin 3x 3sin 2 2x 3 2cos 2 2x cos 2x.sin 3x 3cos 2 2x cos 2x sin 3x cos 2x 0 cos 2x 0 sin 3x cos 2x 0 π π kπ kπ x k Z Với cos2x = 0 2x 2 42 k2 3x 2x k2 x 2 10 5 Với sin 3x cos 2x 0 sin 3x sin 2x k Z x k2 2 3x 2x k2 2 2 π kπ x 4 2 π k2π Vậy phương trình có nghiệm x k Z 10 5 x π k2 π 2 6x 2 3xy x y 1 1 2) 2 2 2 x y 1. 1 6x 2 3xy 3x 2x y 1 3x 1 2x y 1 0 1 x 3 y 2x 1 22 1 Với x , từ (2) suy ra: y 3 3 x 0 y 1 Với y 2x 1 , từ (2) suy ra: x 2x 1 1 5x 4x 0 2 2 2 x 4 y 3 5 5 Vậy hệ phương trình đã cho có 4 nghiệm: 1 2 2 1 2 2 4 3 0;1 , , ; , ; ; 3 5 5 3 3 3 Câu III: www.MATHVN.com --- www.MATHVN.com --- www.MATHVN.com
- f ' x A.3x.ln 3 f x A.3x B A.3x f x dx ln 3 Bx C 2 f ' 0 2 A.ln 3 2 A ln 3 Ta có: 2 6A f x dx 12 ln 3 B 12 B 12 12 1 ln 2 3 2 A ln 3 Vậy B 12 12 ln 2 3 Câu IV: Tâm O của hình cầu ngoại tiếp hình chóp S.ABCD là trung điểm của SC. SC SA 2 AC 2 4a 2 2a 2 a 6 SC a 6 R 2 2 3 4 πR πa 3 6 V 3 Câu V: x sin x 2cos 2 x 0; . f x 2 x cos x 2sin 2 x x x Ta có: cos x 2sin 2sin 2 2sin 1 2 2 2 2 Xét hàm số g t 2t 2 2t 1 t 0; 2 1 g ' t 4t 2 g ' t 0 t 2 1 3 2 g 0 1; g ; g 2 2 2 2 2 g t 0 t 0; 2 x cos x 2sin 0 x 0; . 2 2 www.MATHVN.com --- www.MATHVN.com --- www.MATHVN.com
- f x liên tục trên đoạn 0; . 2 x x x x cos x sin cos x 2sin sin x cos sin x 2cos 2 2 2 2 f ' x 2 x cos x 2sin 2 x 1 sin 2 f ' x 0 x 0; . 2 2 x cos x 2sin 2 GTLN f x = f 0 2 π 2 GTNN f x = f 1 2 2 PHẦN RIÊNG A. Theo chương trình chuẩn Câu VI.a: 1) A 1;1 B 3; 0 C 0; 4 Gọi H x; y là trực tâm tam giác ABC BH x 3; y , CH x; y 4 , AB 2; 1 , AC 1;3 x 3 3y 0 BH.AC 0 BH AC x 3 2x y 4 0 CH AB y 2 CH.AB 0 Vậy H 3; 2 2) Gọi I, J ,K lần lượt là chân các đường vuông góc tương ứng của P lên các mặt phẳng Oxy, Oyz, Oxz. Ta có: I 2;3; 0 , J 0;3; 5 , K 2;0; 5 Mặt phẳng IJK có dạng Ax By Cz D 0 I, J, K thuộc mặt phẳng này nên: 1 A 4 D 2A 3B D 0 1 3B 5C D 0 B D Chọn D = -60, suy ra A = 15, B = 10, C = -6. 6 2A 5C D 0 1 C 10 D Vậy IJK :15x 10y 6z 60 0 Câu VII.a: www.MATHVN.com --- www.MATHVN.com --- www.MATHVN.com
- 24 k 24 24 5 5 5 5 5k 5k k k 1 cos i sin C24 cos isin C24 cos isin 6 6 6 6 6 6 k 0 k 0 24 24 5k 5k k k C 24 cos i C 24 sin 6 6 k 0 k 0 24 5k Phần ảo C k sin 24 6 k 0 5 24 k 5k 5k 5k C 24 k sin Ta có: Ck sin C k sin C k sin 0 24 24 24 24 6 6 6 6 24 5k Suy ra: Ck sin 0 24 6 k 0 B. Theo chương trình nâng cao Câu VI.b: 2 2 1) C : x 3 y 1 32 d song song với đường thẳng x 2y 4 0 d : x 2y c 0 d cắt C theo một dây cung có độ dài bằng 4 d I, d 32 22 5 32c c4 5 c 1 5 c 6 5 Vậy d1 : x 2y 4 0 hoặc d 2 : x 2y 6 0 2) (P) song song với mặt phẳng Q P : x y 2z m 0 x 1 2t x 1 t d1 : y 1 t d 2 : y 2 2t zt zt (Q) giao với (d1): 1 2t 1 t 2t m 0 t m M 1 2m; 1 m; m (Q) giao với (d2): 1 t 2 2t 2t m 0 t m 3 N 2 m; 4 2m; m 3 2 2 MN 2 m 3 m 3 32 2m 2 27 27 MinMN = 3 3 khi m = 0 Khi đó P : x y 2z 0 Vậy P : x y 2z 0 Câu VII.b: x y 1 3.4 2 y1 2 1 4 x 3y 2 log 4 3 2 4 Từ (2) x y 1 1 log 4 3 2y log 4 2y 3 www.MATHVN.com --- www.MATHVN.com --- www.MATHVN.com
- 4 log 4 2 y 3.4 2 y1 2 Thay vào (1): 1 4 3 4 3 .42 y .42 y 2 3 4 4 3t 4 Đặt t 42 y t 0 ta có: 2 9t 2 24t 16 0 t 3t 4 3 4 1 411 4 2 y y log 4 log 4 3 3 2 322 33 11 (2) x 2 log 4 3 3y 2 log 4 3 log 4 3 log 4 3 22 22 11 11 Vậy hệ có nghiệm duy nhất x log 4 3 ; y log 4 3 22 22 www.MATHVN.com --- www.MATHVN.com --- www.MATHVN.com
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đề thi số 1 học kì 1: Môn Tin học lớp 3 - Trường TH Phước Tiến (Năm học 2014-2015)
8 p |
747
|
106
-
6 Đề kiểm tra HK1 môn Toán lớp 3 (2011-2012)
14 p |
264
|
67
-
Đề thi thử và đáp án: Môn Hóa học - Số 3
29 p |
63
|
6
-
Bộ 3 đề giao lưu Toán tuổi thơ cấp trường lớp 5 năm 2019-2020
4 p |
50
|
5
-
Tiết 73: ĐẠO HÀM CẤP HAI
12 p |
83
|
4
-
Hướng dẫn giải thử sức trước kỳ thi số 3 năm 2012 của tạp chí THTT môn: Toán
5 p |
55
|
3
-
Đề thi thử THPT Quốc Gia năm 2020 môn Hóa học - đề số 3
8 p |
18
|
3
-
Đề thi Olympic 24/3 môn Vật lí lớp 11 năm 2021 có đáp án - Sở GD&ĐT Quảng Nam
7 p |
71
|
3
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn
