
Tập iđêan
-
Luận án tiến sĩ Toán học: Dáng điệu tiệm cận của một số bất biến của lũy thừa các iđêan phủ tập trung nghiên cứu các tính chất tiệm cận của bất biến đại số phát sinh từ lũy thừa iđêan phủ trong vành địa phương. Nghiên cứu đóng góp vào việc làm sáng tỏ cấu trúc đại số của các đối tượng hình học thông qua phân tích sâu sắc về các đặc trưng bất biến. Mời các bạn cùng tham khảo bài viết để biết thêm chi tiết!
91p
hoatrongguong04
26-05-2025
1
1
Download
-
Cấu trúc của luận văn "Tính chất tiệm cận của lũy thừa các ideal" gồm 3 chương, trình bày như sau: Kiến thức chuẩn bị; Tính chất tiệm cận của tập iđêan nguyên tố liên kết và hàm độ sâu của lũy thừa iđêan; Hàm độ sâu của tổng các iđêan.
53p
chankora08
03-07-2023
27
8
Download
-
Luận án Tiến sĩ Toán học: Tính chẻ ra của môđun đối đồng điều địa phương và ứng dụng trình bày các nội dung chính sau: Tính chẻ ra của đối đồng điều địa phương; Tính chất ổn định của hệ tham số tốt của môđun Cohen-Macaulay suy rộng dãy; Tính chẻ ra của đối đồng điều địa phương trong vành địa phương và bậc của một môđun; Tính hữu hạn của tập iđêan nguyên tố liên kết.
115p
vijensoo2711
11-07-2021
58
5
Download
-
Nội dung chính của luận văn trình bày các kết quả chính trong bài báo về iđêan nguyên tố liên kết của lũy thừa của iđêan cạnh. Ở luận văn này, ta tìm hiểu ba phần: Matching và Factor-critical, sự bảo toàn của tập iđêan nguyên tố liên kết, bao đóng nguyên và các tập ổn định. Mời các bạn tham khảo!
50p
elephantcarrot
02-07-2021
49
6
Download
-
Nội dung luận văn trình bày các kiến thức cơ sở cần thiết được dùng để chứng minh các kết quả ở các chương sau. Một số kiến thức được trình bày ở đây là: Vành và mô đun Artin, biểu diễn thứ cấp của mô đun Artin, mô đun đối đồng điều địa phương, dãy chính quy và độ sâu của mô đun, đối ngẫu Matlis và một số tính chất. Mời các bạn tham khảo!
48p
elephantcarrot
02-07-2021
23
5
Download
-
Luận văn được chia làm hai chương: Chương 1 dành để trình bày những kiến thức chuẩn bị cần thiết bao gồm: iđêan nguyên tố liên kết, mô đun Ext, mô đun đối đồng điều địa phương, dãy chính quy và độ sâu của mô đun, vành và mô đun phân bậc. Chương 2 là chương chính của luận văn gồm ba mục tương ứng dành để chứng minh chi tiết cho các định lý: Định lý 1, Định lý 2, và Định lý 3. Mời các bạn tham khảo!
38p
elephantcarrot
02-07-2021
27
4
Download
-
Luận văn bao gồm 2 chương: Chương 1 - Tìm hiểu về binoid, đồng cấu binoid, tập sinh binoid, một số lớp binoid đặc biệt, tích smash, tác động binoid trên tập định điểm, địa phương hóa và iđêan trong binoid giao hoán. Chương 2 - Tìm hiểu về đại số và đại số binoid, iđêan trong đại số binoid, cấu trúc mô đun của đại số. Mời các bạn tham khảo!
52p
elephantcarrot
02-07-2021
15
5
Download
-
Bài nghiên cứu sẽ trình bày một vài khái niệm cơ bản cùng các kiến thức hỗ trợ và tập trung làm việc trên tập hợp các iđêan nguyên tố liên kết của các thành phần phân bậc của mô đun đối đồng điều địa phương Ass(HiR+ (M)n) để thấy rõ tính chất ổn định tiệm cận hoặc những tính chất khác của nó.
38p
capheviahe26
02-02-2021
34
3
Download
-
Mục đích của luận văn là trình bày lại một số vấn đề cơ bản về tập đại số trong Kn (tức là tập nghiệm của một họ đa thức n biến trên một trường K). Luận văn thuộc lĩnh vực Hình học đại số, ở đó người ta dùng công cụ của Đại số (vành đa thức, iđêan, iđêan nguyên tố,...) để nghiên cứu các vật Hình học (tập đại số, tập đại số bất khả quy,...).
42p
capheviahe26
02-02-2021
35
3
Download
-
Tính cofinite cho các môđun được giới thiệu bởi Hartshorne trên một bài báo đăng trên tạp chí nổi tiếng Inventiones Mathematica năm 1970, ở đó ông chứng minh rằng H j I (M) là I−cofinite với mọi j nếu R là vành chính quy địa phương đầy đủ và I là iđêan chính hoặc I là iđêan nguyên tố chiều bằng 1.
47p
capheviahe26
02-02-2021
36
4
Download
-
Cho (R, m) là vành Noether địa phương và M là R-môđun hữu hạn sinh. Chiều Krull, tập iđêan nguyên tố liên kết, đa thức Hilbert-Samuel và số bội là các bất biến quan trọng của M trong nghiên cứu môđun này. Chúng có mối liên hệ chặt chẽ với nhau. Nếu kí hiệu chiều của M là d thì từ một kết quả quen thuộc SuppR(M) = Var(AnnR M) và min Var(AnnR M) = min AssR(M) ta tính được d thông qua tập iđêan nguyên tố liên kết của M.
53p
capheviahe26
02-02-2021
67
4
Download
-
Trong đại số giao hoán, về sự tồn tại iđêan nguyên tố có một số kết quả cơ bản thường gặp trong quá trình học đại số giáo hoán. Ví dụ. Định lý Cohen: Tồn tại iđêan nguyên tố trong vành giao hoán. Định lý [Ka2, p.1].Cho S là tập đóng nhân trong vành giao hoán R, I là tập các iđêan không giao với S. Khi đó iđêan cực đại trong I luôn là nguyên tố. Ngoài ra có các kết quả khác của Herstein, Isaacs... Mặc dù rất quan trọng nhưng các kết quả này xuất hiện một cách rời rạc không hệ thống.
42p
capheviahe26
02-02-2021
44
7
Download
-
Cho R là vành Noether, a là một iđêan của R, và M là R−môđun. Một vấn đề quan trọng trong đại số giao hoán là xác định khi nào tập các iđêan nguyên tố liên kết của môđun đối đồng điều địa phương thứ i, Hi a (M) của M ứng với iđêan a là hữu hạn. Nếu R là vành địa phương chính quy chứa một trường, khi đó Hi a (R) chỉ có hữu hạn các iđêan nguyên tố liên kết với mọi i ≥ 0.... Mời các bạn cùng tham khảo luận văn.
51p
capheviahe26
02-02-2021
48
5
Download
-
Đề tài gồm 2 chương trình bày các công thức chuyển dịch tập iđêan nguyên tố liên kết qua địa phương hóa và qua đầy đủ hóa; một số vấn đề về tiêu chuẩn Artin của Melkersson [Mel], tập iđêan nguyên tố gắn kết và môđun đối đồng điều địa phương. Chương 2 luận văn trình bày về hệ tham số, các lớp vành đặc biệt, một số bổ đề liên quan và chứng minh Định lý chính.
41p
capheviahe26
02-02-2021
22
3
Download
-
Bài toán về chỉ số chính quy của tập điểm béo giúp chúng ta đánh giá được chiều của iđêan các đa thức thuần nhất triệt tiêu trên tập các điểm phân biệt với các số bội tương ứng, là vấn đề mà hiện nay vẫn là bài toán mở. Bài toán này còn có liên quan đến giả thuyết của Nagata về chặn dưới cho bậc các hàm nội suy mà hiện nay vẫn chưa được giải quyết.
33p
phongtitriet000
08-08-2019
30
2
Download
-
Luận văn Thạc sĩ Toán học: Một số kết quả về môđun đối đồng điều địa phương cho một cặp Iđêan tập trung tìm hiểu về tính Artin của môđun đối đồng điều địa phương cho một cặp iđêan; tính cofinite của môđun đối đồng điều địa phương cho một cặp iđêan; tính hữu hạn sinh của môđun đối đồng điều địa phương cho một cặp iđêan.
40p
maiyeumaiyeu03
19-07-2016
72
8
Download
-
Luận án Tiến sĩ Toán học: Về tập Iđêan nguyên tố gắn kết của môđun đối đồng điều địa phương do Trần Đõ Minh Châu thực hiện có kết cấu gồm 3 chương và phần kết luận - kiến nghị: Chương 1 - Kiến thức chuẩn bị, chương 2 - Môđun đối đồng điều địa phương với giá cực đại, chương 3 - Môđun đối đồng điều địa phương cấp cao nhất với giá tùy ý.
87p
talata_8
27-01-2015
153
26
Download
-
Cho R là vành giao hoán có đơn vị 1, S ⊆ R. Khi đó S được.gọi là tập nhân đóng của vành R nếu 1 ∈ S và ∀a,b ∈ S thì ab ∈ S..Ví dụ. a) Cho R là một miền nguyên, R* = R \ {0} thì R* là một tập nhân đóng của.vành R..b) Cho P là một iđêan nguyên tố của vành R, đặt S = R \ P thì S là tập nhân đóng.của vành R..1.1.2 Xây dựng môđun các thương. Cho M là R-môđun, S là một tập nhân đóng.của vành R.
4p
truongch16vinh
30-09-2013
60
4
Download
-
Cho (R;m) là vành giao hoán, địa phương, Noether với iđêan cực đại duy nhất m; I là iđêan của R, M là R-môđun hữu hạn sinh và A là R-môđun Artin. Để nghiên cứu cấu trúc của các môđun Noether và môđun Artin, người ta thường quan tâm đến các tập iđêan nguyên tố liên kết và iđêan nguyên tố gắn kết tương ứng của chúng.
0p
greengrass304
11-09-2012
112
23
Download
-
Cho (R,m) là vành giao hoán, địa phương, Noether với iđêan cực đại duy chất m; M là R-môđun hữu hạn sinh và A là R-môđun Artin. Như chúng ta đã biết, các khái niệm phân tích nguyên sơ, chiều Krull là những khái niệm cơ bản của Hình học đại số và Đại số giao hoán mà thông qua đó người ta có thể nói lên cấu trúc của các đa tạp đại số hoặc cấu trúc của các vành Noether và các môđun hữu hạn sinh trên chúng....
0p
greengrass304
11-09-2012
102
17
Download
CHỦ ĐỀ BẠN MUỐN TÌM
