ÐỀ THI THỬ ĐẠI HỌC MÔN TOÁN SỐ 14
lượt xem 6
download
Download
Vui lòng tải xuống để xem tài liệu đầy đủ
Tham khảo tài liệu 'ðề thi thử đại học môn toán số 14', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: ÐỀ THI THỬ ĐẠI HỌC MÔN TOÁN SỐ 14
- ÐỀ THI thö ĐẠI HỌC lÇn ii PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I:(2 điểm) Cho hàm số y = x3 + 3x2 + mx + 1 có đồ thị là (Cm); ( m là tham số) 1. Khảo sát sự biến thiên và vẽ đồ thị hàm số khi m = 3. 2. Xác định m để (Cm) cắt đường thẳng: y = 1 tại ba điểm phân biệt C(0;1), D, E sao cho các tiếp tuyến của (Cm) tại D và E vuông góc với nhau. Câu II:(2 điểm) x 2 y xy 0 1. Giải hệ phương trình: x 1 2 y 1 1 cos 2 x 1 sin 2 x sin 2 x . 2. T×m x (0; ) tho¶ m·n ph¬ng tr×nh: cotx – 1 = 1 tan x 2 Câu III: (2 điểm) 1. Trên cạnh AD của hình vuông ABCD có độ dài là a, lấy điểm M sao cho AM = x (0 < x a). Trên đường thẳng vuông góc với mặt phẳng (ABCD) tại A, lấy điểm S sao cho SA = 2a. a) Tính kho ảng cách từ điểm M đến mặt phẳng (SAC). b) KÎ MH vu«ng gãc víi AC t¹i H . T×m vÞ trÝ cña M ®Ó thÓ tÝch khèi chãp SMCH lín nhÊt ( x sin 2 2 x) cos 2 xdx . 2. Tính tích phân: I = 4 0 Câu IV: (1 điểm) : Cho c¸c sè thùc d¬ng a,b,c thay ®æi lu«n tho¶ m·n : a+b+c=1.
- a b2 b c2 c a2 Chứng minh rằng : 2. bc ca ab PHẦN RIÊNG (3 điểm) ( Chó ý!:ThÝ sinh chØ ®îc chän bµi lµm ë mét phÇn) A. Theo chương trình chuẩn Câu Va :1.Trong mÆt ph¼ng Oxy cho tam gi¸c ABC biÕt A(2; - 3), B(3; - 2), cã diÖn tÝch b»ng 3 vµ träng t©m thuéc ®êng th¼ng : 3x – y – 8 = 0. T×m täa ®é ®Ønh C. 2 2.Trong kh«ng gian víi hÖ to¹ ®é Oxyz cho hai ®iÓm A(1;4;2),B(-1;2;4) x 1 y 2 z vµ ®êng th¼ng : .T×m to¹ ®é ®iÓm M trªn sao 1 1 2 cho: MA2 MB2 28 4 2 2 2 x 1 2 x 1 Câu V Ia : Gi¶i bÊt ph¬ng tr×nh: ( 2 3 ) x 3) x (2 2 3 B. Theo chương trình Nâng cao Câu Vb: 1. Trong mpOxy, cho đường tròn (C): x2 + y2 – 6x + 5 = 0. Tìm M thuộc trục tung sao cho qua M kẻ được hai tiếp tuyến của (C) mà góc giữa hai tiếp tuyến đó bằng 600. 2 .Trong không gian với hệ tọa độ Oxyz, cho điểm M(2 ; 1 ; 0) và đường thẳng d víi x 1 y 1 z .Viết phương trình chính tắc của đường thẳng đi qua điểm M, d: 1 2 1 cắt và vuông góc với đường thẳng d vµ t×m to¹ ®é cña ®iÓm M’ ®èi xøng víi M qua d 4 log 3 xy 2 ( xy ) log3 2 Câu VIb: Giải hệ phương trình 2 2 log 4 ( x y ) 1 log 4 2 x log 4 ( x 3 y ) ………………… …..………………..Hết……………………………………. (C¸n bé coi thi kh«ng gi¶i thÝch g× thªm) Híng dÉn chÊm m«n to¸n
- Néi Dung ý §iÓm C©u 2 I Kh¶o s¸t hµm sè (1 ®iÓm) 1 1 y = x3 + 3x2 + mx + 1 (Cm ) 1. m = 3 : y = x3 + 3x2 + 3x + 1 (C3) + TXÑ: D = R + Giới hạn: lim y , lim y 0,25 x x + y’ = 3x2 + 6x + 3 = 3(x2 + 2x + 1) = 3(x + 1)2 0; x 0,25 hµm sè ®ång biÕn trªn R Baûng bieán thieân: 0,25 + y ” = 6x + 6 = 6(x + 1) y” = 0 x = –1 tâm đối xứng U(-1;0) * Ñoà thò (C 3): Qua A(-2 ;-1) ; U(-1 ;0) ; A’(0 ;1)
- 0,25 1 2 Phöông trình hoaønh ñoä giao ñieåm cuûa (Cm) vaø ñöôøng thaúng y = 1 laø: 0,25 x3 + 3x2 + mx + 1 = 1 x(x2 + 3x + m) = 0 x 0 x2 3x m 0 (2) * (Cm) caét ñöôøng thaúng y = 1 taïi C(0;1), D, E phaân bieät: Phöông trình (2) coù 2 nghieäm xD, xE 0. m 0 0,25 9 4m 0 4 (*) 2 m 9 0 3 0 m 0 Luùc ñoù tieáp tuyeán taïi D, E coù heä soá goùc laàn löôït laø: 0,25 kD=y’(xD)= 3x 2 6x D m (3x D 2m); D kE=y’(xE)= 3x 2 6x E m (3x E 2m). E C aùc tieáp tuyeán taïi D, E vuoâng goùc khi vaø chæ khi: kDkE
- = –1 (3xD + 2m)(3xE + 2m) =-1 9xDxE+6m(xD + xE) + 4m2 = –1 0,25 9m + 6m(–3) + 4m 2 = –1 (vì xD + xE = –3; xDxE = m theo 9 65 m 8 ñònh lý Vi-ét). 4m2 – 9m + 1 = 0 9 65 m 8 1 So s¸nhÑk (*): m = 9 65 8 II 2 1 1 x 1 1 . §k: 1 y 2 0,5 (1) x y ( y xy) 0 ( x y )( x 2 y) 0 x 2 y 0 x 2 y x y 0(voly) 0,25 x = 4y Thay v µo (2) cã 4 y 1 2 y 1 1 4 y 1 2 y 1 1 4 y 1 2 y 1 2 2 y 1 1 2 y 1 2 2 y 1 1 y (tm) 2 y 1 0 x 2 2 x 10 5 2 y 1 2 (tm) y 2 V©y hÖ cã hai nghiÖm (x;y) = (2;1/2) vµ (x;y) = (10;5/2) 0,25 2 1
- sin 2 x 0 sin 2 x 0 ®K: sin x cos x 0 tan x 1 cos x sin x cos 2 x. cos x sin 2 x sin x cos x PT cos x sin x sin x 0,25 cos x sin x cos 2 x sin x cos x sin 2 x sin x cos x sin x cos x sin x sin x (1 sin 2 x ) 0,25 (cos x sin x )(sin x cos x sin 2 x 1) 0 0,25 (cosx sin x)(sin2x cos2x 3) 0 c os x sinx 0 (cos x sinx)( 2sin(2x ) 3) 0 2 sin(2 x ) 3( voly ) 4 4 0,25 k ( k Z ) (tm®k) cos x sin x 0 tanx = 1 x 4 Do x 0; k 0 x 4 III 2 1 1
- SA ( ABCD) Do ( SAC ) ( ABCD) SA ( SAC ) 0,25 Lai cã MH AC ( SAC ) ( ABCD ) x MH ( SAC ) d ( M , SAC ) MH AM .sin 45o 2 Ta cã x x AH AM .cos 450 HC AC AH a 2 2 2 O,5 1 1x x S MHC MH .MC (a 2 ) 2 22 2 1 1 x x VSMCH SA.S MCH 2a (a 2 ) 3 6 2 2 Tõ biÓu thøc trªn ta cã: x x 0,25 a 2 a3 1 2 2 2 a VSMCH 3 2 6 x x a 2 2 2 xa M trïng víi D 2 1 0,25 4 4 4 2 2 I = ( x sin 2x)cos2xdx xcos2xdx sin 2 xcos2 xdx I 1 I 2 0 0 0
- TÝnh I1 0,25 du dx u x 14 x 1 I1 sin 2x 4 sin 2xdx ®Æt v cos2xdx v 2 sin 2x 2 20 0 1 1 cos 2 x 4 84 84 0 TÝnh I2 0,25 4 1 1 1 I 2 sin 2 2xd(sin2x) sin3 2x 4 20 6 6 0 1 0,25 1 1 VËy I= 8 4 6 8 12 IV 1 1 b2 c2 a2 a b c .Ta cã :VT = ( )( ) A B bc ca ab bc ca a b 0,25 0,25
- 1 1 1 1 (a b ) (b c ) ( c a ) a b b c c a A3 2 13 1 1 1 9 3 ( a b)(b c)(c a )3 3 ab bc ca 2 2 3 A 2 a2 b2 c2 12 (a b c)2 ( )(a b b c c a ) ab bc ca 0,25 1 1 B.2 B 2 3 1 Tõ ®ã tacã VT 2 VP 2 2 0,25 DÊu ®¼ng thøc x¶y ra khi a=b=c=1/3 V.a 2 1 1 0,25 55 Ta cã: AB = 2 , trung ®iÓm M ( ; ), 22 pt (AB): x – y – 5 = 0 0,25 3 1 3 S ABC = d(C, AB).AB = d(C, AB)= 2 2 2 1 Gäi G(t;3t-8) lµ träng t©m tam gi¸c ABC th× d(G, AB)= 2 0,25 t (3t 8) 5 1 d(G, AB)= = t = 1 hoÆc t = 2 2 2 G(1; - 5) hoÆc G(2; - 2) 0,25 Mµ CM 3GM C = (-2; -10) hoÆc C = (1; -1)
- 2 1 x 1 t ptts : y 2 t M (1 t ; 2 t ; 2t ) 0,5 z 2t 0,25 Ta cã: MA2 MB 2 28 12t 2 48t 48 0 t 2 Tõ ®ã suy ra : M (-1 ;0 ;4) 0,25 VI.a 1 1 0,25 x2 2x x2 2x Bpt 2 3 2 3 4 0,25 1 x2 2x t 4 t 2 3 (t 0) BPTTT : t t2 4t 1 0 2 3 t 2 3 (tm) 0,25 x 2 2 x 2 3 1 x 2 2 x 1 Khi ®ã : 2 3 2 3 0,25 x2 2x 1 0 1 2 x 1 2
- V.b 2 1 1 . (C) có tâm I(3;0) và bán kính R = 2; M Oy M(0;m) 0,5 Qua M kẻ hai tiếp tuyến MA và MB ( A và B là hai tiếp điểm) AMB 600 (1) Vậy Vì MI là phân giác của AMB AMB 1200 (2) IA (1) AMI = 300 MI = 2R MI sin 300 m2 9 4 m 7 23 IA R m2 9 4 3 (2) AMI = 600 MI MI = 0 3 sin 60 3 Vô nghiệm 0,5 V ậy có hai điểm M1(0; 7 ) và M2(0;- 7 ) 2 1 Gọi H là hình chiếu vuông góc của M trên d, ta có MH là đường thẳng đi qua M, cắt và vuông góc với d. 0,25 x 1 2t d có phương trình tham số là: y 1 t z t Vì H d nên tọa độ H (1 + 2t ; 1 + t ; t).Suy ra : MH = (2t 1 ; 2 + t ; t) 0,25 Vì MH d và d có một vectơ chỉ phương là = (2 ; 1 ; 1), nên : u 2 2.(2t – 1) + 1.( 2 + t) + ( 1).(t) = 0 t = Vì thế, . = MH 3 1 4 2 ; ; 3 3 3 uMH 3MH (1; 4; 2)
- Suy ra, phương trình chính tắc của đường thẳng MH là: 0,25 x 2 y 1 z 4 2 1 7 1 2 Theo trªn cã H ( ; ; ) mµ H lµ trung ®iÓm cña MM’ nªn to¹ ®é 3 3 3 0,25 8 5 4 M’ ( ; ; ) 3 3 3 ĐK: x>0 , y>0 22log3 xy 2log3 xy 2 0 (1) 0,5 VIb 0,25 3 log3xy = 1 xy = 3y= x (2) log4(4x2+4y2) = log4(2x2 +6xy) x2+ 2y2 = 9 0,25 6 Kết hợp (1), (2) ta đ ược nghiệm của hệ: ( 3 ; 3 ) ho ặc ( 6 ; ) 2
- S M A D H C B
CÓ THỂ BẠN MUỐN DOWNLOAD
-
ÐỀ THI THỬ ĐẠI HỌC MÔN TOÁN SỐ 19
11 p |
204
|
95
-
ÐỀ THI THỬ ĐẠI HỌC MÔN TOÁN KHỐI D
12 p |
83
|
11
-
ÐỀ THI THỬ ĐẠI HỌC MÔN TOÁN SỐ 5
11 p |
63
|
7
-
ÐỀ THI THỬ ĐẠI HỌC MÔN TOÁN SỐ 3
11 p |
75
|
7
-
ÐỀ THI THỬ ĐẠI HỌC MÔN TOÁN SỐ 15
8 p |
74
|
6
-
ÐỀ THI THỬ ĐẠI HỌC MÔN TOÁN SỐ 6
10 p |
75
|
6
-
ÐỀ THI THỬ ĐẠI HỌC MÔN TOÁN SỐ 13
6 p |
50
|
5
-
ÐỀ THI THỬ ĐẠI HỌC MÔN TOÁN SỐ 4
14 p |
72
|
5
-
ÐỀ THI THỬ ĐẠI HỌC MÔN TOÁN NĂM 2011
10 p |
72
|
5
-
ÐỀ THI THỬ ĐẠI HỌC MÔN TOÁN SỐ 2
14 p |
62
|
4
-
ÐỀ THI THỬ ĐẠI HỌC MÔN TOÁN SỐ 23
13 p |
76
|
4
-
ÐỀ THI THỬ ĐẠI HỌC MÔN TOÁN SỐ 21
12 p |
76
|
4
-
ÐỀ THI THỬ ĐẠI HỌC MÔN TOÁN SỐ 20
10 p |
77
|
4
-
ÐỀ THI THỬ ĐẠI HỌC MÔN TOÁN SỐ 18
7 p |
74
|
4
-
ÐỀ THI THỬ ĐẠI HỌC MÔN TOÁN SỐ 17
13 p |
73
|
4
-
ÐỀ THI THỬ ĐẠI HỌC MÔN TOÁN SỐ 16
12 p |
74
|
4
-
ÐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG KHỐI D - 2011 Môn thi: ANH VĂN - Mã đề: 138
6 p |
59
|
4
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn
