Các dạng toán về hàm số
lượt xem 8
download
Download
Vui lòng tải xuống để xem tài liệu đầy đủ
Nếu đại lợng y phụ thuộc vào đại lợng thay đổi x sao cho với mỗi giá trị của x ta luôn xác định đợc chỉ một giá trị tơng ứng của y thì y đợc gọi là hàm số của x và x đợc gọi là biến số. *) Ví dụ: y = 2x; y = - 3x + 5; y = 2x + *) Chú ý: Khi đại lợng x thay đổi mà y luôn nhận một giá trị không đổi thì y đợc gọi là hàm hằng. *)
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Các dạng toán về hàm số
- Các dạng toán về hàm số 1) Khái niệm về hàm số (khái niệm chung). Nếu đại lợng y phụ thuộc vào đại lợng thay đổi x sao cho với mỗi giá trị của x ta luôn xác định đợc chỉ một giá trị tơng ứng của y thì y đợc gọi là hàm số của x và x đợc gọi là biến số. 3 ; ... *) Ví dụ: y = 2x; y = - 3x + 5; y = 2x + *) Chú ý: Khi đại lợng x thay đổi mà y luôn nhận một giá trị không đổi thì y đợc gọi là hàm hằng. *) Ví dụ: Các hàm hằng y = 2; y = - 4; y = 7; ... 2) Các cách thờng dùng cho một hàm số a) Hàm số cho bởi bảng. b) Hàm số cho bởi công thức. - Hàm hằng: là hàm có công thức y = m (trong đó x là biến, m ) - Hàm số bậc nhất: Là hàm số có dạng công thức y = ax + b Trong đó: x là biến, a,b , a 0 . a là hê số góc, b là tung độ gốc. Chú ý: Nếu b = 0 thì hàm bậc nhất có dạng y = ax ( a 0 ) - Hàm số bậc hai: Là hàm số có công thức y = ax2 + bx + c (trong đó x là biến, a,b,c , a 0 ). Chú ý: Nếu c = 0 thì hàm bậc hai có dạng y = ax2 + bx ( a 0 ) Nếu b = 0 và c = 0 thì hàm bậc hai có dạng y = ax2 ( a 0 ) 3) Khái niệm hàm đồng biến và hàm nghịch biến.
- Cho hàm số y = f(x) xác định với mọi x . Với x1, x2 bất kì thuộc R a) Nếu giá trị của biến x tăng lên mà giá trị tơng ứng f(x) cũng tăng lên thì hàm số y = f(x) đợc gọi là hàm đồng biến. x1 x2 mµ f(x1 ) < f(x2 ) Nếu thì hàm số y = f(x) đồng biến trên R b) Nếu giá trị của biến x tăng lên mà giá trị tơng ứng f(x) giảm đi thì hàm số y = f(x) đợc gọi là hàm nghịch biến. x1 x2 mµ f(x1 ) > f(x2 ) Nếu thì hàm số y = f(x) nghịch biến /R 4) Dấu hiệu nhận biết hàm đồng biến và hàm nghịch biến. a) Hàm số bậc nhất y = ax + b ( a 0 ). - Nếu a > 0 thì hàm số y = ax + b luôn đồng biến trên . - Nếu a < 0 thì hàm số y = ax + b luôn nghịch biến trên . b) Hàm bậc hai một ẩn số y = ax2 ( a 0 ) có thể nhận biết đồng biến và nghịch biến theo dấu hiệu sau: - Nếu a > 0 thì hàm đồng biến khi x > 0, nghịch biến khi x < 0. - Nếu a < 0 thì hàm đồng biến khi x < 0, nghịch biến khi x > 0. 5) Khái niệm về đồ thị hàm số. Đồ thị của hàm số y = f(x) là tập hợp tất cả các điểm biểu diễn các cặp giá trị tơng ứng (x; f(x)) trên mặt phẳng toạ độ. Chú ý: Dạng đồ thị: a) Hàm hằng. Đồ thị của hàm hằng y = m (trong Đồ thị của hàm hằng x = m (trong đó đó x là biến, m ) là một đờng y là biến, m ) là một thẳng luôn song song với trục Ox. đờng thẳng luôn song song với trục Oy.
- b) Đồ thị hàm số y = ax ( a 0 ) là một đờng thẳng (hình ảnh tập hợp các điểm) luôn đi qua gốc toạ độ. *) Cách vẽ: Lấy một điểm thuộc đồ thị khác O(0 ; 0), chẳng hạn điểm A(1 ; a). Sau đó vẽ đờng thẳng đi qua hai điểm O(0 ; 0) v à A(1 ; a) ta đợc đồ thị hàm số y = ax ( a 0 ) c) Đồ thị hàm số y = ax + b ( a,b 0 ) là một đờng thẳng (hình ảnh tập hợp b các điểm) cắt trục tung tại điểm (0; b) và cắt trục hoành tại điểm ( a , 0).
- *) Cách vẽ: Có hai cách vẽ cơ bản +) Cách 1: Xác định hai điểm bất kì nào đó thuộc đồ thị, chẳng hạn nh sau: Cho x = 1 => y = a + b, ta đợc A(1 ; a + b) Cho x = -1 => y = - a + b, ta đợc A(-1 ; - a + b) Vẽ đờng thẳng đi qua hai điểm A và B ta đợc đồ thị hàm số y = ax + b ( a,b 0 ) +) Cách 2: Tìm giao điểm của đồ thị với các trục tọa độ, cụ thể: Cho x = 0 => y = b, ta đợc M(0 ; b) Oy b b Cho y = 0 => x = a , ta đợc N( a ; 0) Ox Vẽ đờng thẳng đi qua hai điểm M và N ta đợc đồ thị hàm số y = ax + b ( a,b 0 ) d) Đồ thị hàm số y = ax2 ( a 0 ) là một đờng cong Parabol có đỉnh O(0;0). Nhận trục Oy làm trục đối xứng - Đồ thị ở phía trên trục hoành nếu a > 0. - Đồ thị ở phía dới trục hoành nếu a < 0.
- 6) Vị trí tơng đối của hai đờng thẳng *) Hai đờng thẳng y = ax + b ( a 0 ) và y = a’x + b’ ( a' 0 ) + Trùng nhau nếu a = a’, b = b’. + Song song với nhau nếu a = a’, b b’. + Cắt nhau nếu a a’. + Vuông góc nếu a.a’ = -1 . *) Hai đờng thẳng ax + by = c và a’x + b’y = c’ (a, b, c, a’, b’, c’ ≠ 0) abc + Trùng nhau nếu a ' b' c' abc + Song song với nhau nếu a ' b' c' ab + Cắt nhau nếu a ' b' 7) Góc tạo bởi đờng thẳng y = ax + b ( a 0 ) và trục Ox Giả sử đờng thẳng y = ax + b ( a 0 ) cắt trục Ox tại điểm A. Góc tạo bởi đờng thẳng y = ax + b ( a 0 ) là góc tạo bởi tia Ax và tia AT (với T là một điểm thuộc đờng thẳng y = ax + b có tung độ dơng). - Nếu a > 0 thì góc tạo bởi đờng thẳng y = ax + b với trục Ox đ ợc tính theo công thức nh sau: tg a (cần chứng minh mới đợc dùng). Nếu a < 0 thì góc tạo bởi đờng thẳng y = ax + b với trục Ox đợc tính - theo công thức nh sau: 1800 với tg a (cần chứng minh mới đợc dùng).
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Các dạng toán về khảo sát hàm số
14 p |
2020
|
552
-
Các dạng toán về đạo hàm thường gặp
21 p |
922
|
169
-
Toán học lớp 10: Đại cương về hàm số (phần 1) - Thầy Đặng Việt Hùng
3 p |
463
|
83
-
Giới hạn của hàm số và một số dạng toán có liên quan
3 p |
268
|
79
-
SKKN: Phân dạng một số bài Toán về hàm số để ôn thi tốt nghiệp
0 p |
184
|
30
-
Tuyển chọn các bài toán về hàm số: Phần 1 (Khóa luyện thi 2015 - 2016) - Đặng Việt Hùng
41 p |
137
|
23
-
Lý thuyết và một số bài tập về hàm số bậc 4
13 p |
103
|
14
-
Giải tích 12 – Các dạng toán về hàm ẩn f(x) và f’(x)
110 p |
196
|
14
-
Khóa học toán 10: Đại cương về hàm số – P1
3 p |
123
|
11
-
Sáng kiến kinh nghiệm THPT: Góp phần phát triển tư duy cho học sinh thông qua một số bài toán về chủ đề hàm số hợp trong chương trình giải tích THPT lớp 12
63 p |
19
|
5
-
Sáng kiến kinh nghiệm THPT: Nâng cao năng lực, phát triển tư duy toán học cho học sinh qua việc giải quyết một số bài toán về hàm số bằng cách sử dụng các yếu tố của đạo hàm
53 p |
14
|
4
-
Sáng kiến kinh nghiệm THCS: Phân dạng các bài toán về hàm số trong chương trình toán THCS
30 p |
31
|
3
-
Toàn tập Hàm số
470 p |
44
|
3
-
Các dạng toán thường gặp môn Toán 11 – Bài: Hàm số lượng giác
33 p |
8
|
2
-
Các dạng toán thường gặp môn toán 11 – Bài: Đạo hàm bằng định nghĩa
9 p |
18
|
2
-
Các dạng toán thường gặp môn toán 11 – Bài: Đạo hàm hàm số lượng giác
5 p |
9
|
2
-
Các dạng toán thường gặp môn toán 11 – Bài: Giới hạn hàm số
49 p |
5
|
1
-
Các dạng toán thường gặp môn toán 11 – Bài: Hàm số liên tục
31 p |
7
|
1
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn
