CHUYÊN ĐỀ: KHẢO SÁT HÀM SỐ VÀ CÁC BÀI TOÁN LIÊN QUAN
lượt xem 40
download
Download
Vui lòng tải xuống để xem tài liệu đầy đủ
Bài 1. Cho hàm số (C) 1/ Khảo sát và vẽ đồ thị (C) của hàm số . 2/ Dựa vào đồ thị (C) , biện luận theo m số nghiệm của phương . 3/ Viết phương trình tiếp tuyến của (C) tại điểm .
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: CHUYÊN ĐỀ: KHẢO SÁT HÀM SỐ VÀ CÁC BÀI TOÁN LIÊN QUAN
- NỘI DUNG GỒM CÓ 1. Khảo sát hàm số và các bài toán liên quan : 14 tiết 2. Bài toán tổng hợp: 4 tiết. 3. Phương trình, bất phương trình mũ và lôga: 8 tiết. 4. Tích phân và ứng dụng của tích phân: 10 tiết. 5. Hình không gian tổng hợp: 10tiết. 6. Phương pháp toạ độ trong không gian: 16 tiết. 7. Số phức: 6 tiết. 8. Phụ lục. 1
- KHẢO SÁT HÀM SỐ VÀ CÁC BÀI TOÁN LIÊN QUAN Thời gian: 14 tiết Tiết 1: Bài 1. Cho hàm số y = x 3 − 3x + 2 (C) 1/ Khảo sát và vẽ đồ thị (C) của hàm số . 2/ Dựa vào đồ thị (C) , biện luận theo m số nghiệm của phương x 3 − 3 x + 2 = m . 3/ Viết phương trình tiếp tuyến của (C) tại điểm M ( 2;4 ) . Giải: 1/ HS tự làm Đồ thị: y f(x)=x^3-3x+2 f(x)=4 x(t)=-1 , y(t)=t 8 6 4 2 x -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 -2 -4 -6 -8 2) Số nghiệm thực của phương trình x 3 − 3 x + 2 = m chính là số giao điểm của đồ thị (C) của hàm số y = x3 − 3x + 2 và đừờng thẳng (d): y = m. Dựa vào đồ thị ta có: m4 m=0 +/ : (d) và (C) có hai điểm chung, do đó phương trình có hai nghiệm ( 1 đơn, 1 kép) m=4 +/ 0 < m < 4 : (d) và (C) có ba điểm chung, do đó phương trình có ba nghiệm 3) Gọi M(x0;y0) là toạ độ tiếp điểm x0 = 2; y0 = 4 y ' = 3x 2 − 3 y '(2) = 9 PTTT cần tìm là: y = 9(x – 2) + 4 y = 9x - 14 1 3 2 Bài 2: Cho hàm số y = − x + x − có đồ thị ( C ) 2 3 3 1/ Khảo sát và vẽ đồ thị ( C ) 2/ Viết phương trình tiếp tuyến của ( C ) ,biết hệ số góc của tiếp tuyến bằng – 3 3/ Tính diện tích của hình phẳng giới hạn bởi đồ thị ( C ) ,trục hoành và hai đường thẳng x = 0, x = 2 . Lời giải a/ Đồ thị: y 2 3 x 1 2 -2 3 2
- 2 x0 = −1 y0 = 3 2/ Gọi M(x0;y0) là toạ độ tiếp điểm � y '( x0 ) = −3 � − x0 + 2 x0 = −3 � 2 2 x0 = 3 y0 = − 3 y ' = 3x 2 − 3y '(2) = 9 � 2� 2 7 − * PTTT tại � 1; � y − = −3( x + 1) � y = −3 x − là: � 3� 3 3 � 2� 2 25 * PTTT tại � − � y + = −3( x − 3) � y = −3 x + 3; là: � 3� 3 3 1 1 � 3 2� 5 3/ Từ hình vẽ, ta có diện tích hình phẳng cần tìm là S = 2 � x − x + � = 2 dx 0� 3 3� 6 BTVN: Cho hàm số y = x3 – x2 + (m – 1)x – m2 + 2 (Cm) 1/ Khảo sát sự biến thiên và vẽ đồ thị (C2 ) của hàm số với m =2 2/ Viết PTTT của đồ thị hàm số (C2 ) biết tung độ tiếp điểm bằng -2 3/ Tìm m để hàm số trên có cực trị. Tiết 2: Bài 1: Cho hàm số y = - x3 + 3x2 + 3(m2-1)x – 3m2 – 1 ( C m ) 1/ Khảo sát và vẽ đồ thị ( C1 ) của hàm số với m = 0. 2/ Viết phương trình tiếp tuyến của đồ thị hàm số ( C1 ) tại giao điểm với trục Oy 3/ Tìm điều kiện của m để hàm số có cực đại và cực tiểu. Giải : 1/ HS tự làm Với m = 1 ta có: y = -x3 +3x2 – 3x y f(x )=-x^3 +3x^2 -3x 4 3 2 1 x -4 -3 -2 -1 1 2 3 4 -1 -2 -3 -4 Đồ thị : 2/ C1 giao với Oy tại điểm M(0;0) y' (0) = -3 Vậy PTTT là : y = -3(x – 0) + 0 � y = −3x 3/ Ta có y' = -3x2 + 6x + 3(m2 - 1) HS có cực đại ,cực tiểu ⇔ pt y' = 0 có 2 nghiệm phân biệt ⇔ -3x2 + 6x + 3(m2 - 1) = 0 có 2 nghiệm phân biệt � 9 + 9(m 2 − 1) > 0 ⇔ ∆' > 0 � m2 > 0 ۹ m 0 3
- Bài 2: Cho hàm số y = - x3 + 3mx2 – 2m + 1 x (Cm) 2 ( ) 1/ Khảo sát và vẽ đồ thị (C2) của hàm số trên với m = 2 2/ Viết phương trình tiếp tuyến của (C2) tại điểm có hoành độ bằng -2 3/ Tìm m để hàm số trên có cực đại, cực tiểu. Giải: 1/ HS tự làm m=2 y = − x3 + 6 x 2 − 9 x 2/ Gọi (x0;y0) toạ độ tiếp điểm, ta có x0 = -2 ⇒ y0 = y( -2) = 50 f '(- 2) = -45 Vậy phương trình tiếp tuyến là : y – 50 = -45(x + 2) y = -45x - 40. 3/ y’ = -3x2 + 6mx – (2m2 + 1) HS có cực đại ,cực tiểu ⇔ pt y' = 0 có 2 nghiệm phân biệt ⇔ -3x2 + 6mx - (2m2 + 1) = 0 có 2 nghiệm phân biệt ⇔ ∆' > 0 � 9m 2 − 3(2m 2 + 1) > 0 � 3m 2 − 3 > 0 � m2 > 1 m >1 m < −1 Vậy với m > 1 hoặc m < -1 thì hàm số có cực đại, cực tiểu. BTVN: Cho hàm s ố y =-x3 +3(m+1)x2 -2 (Cm) 1/ KS sự biến thiên và vẽ đồ thị (C ) v ới m =0 2/ Tìm m để đồ thị (Cm) có cực đại, cực tiểu. 3/ Tìm m để hsố đạt cực đại tại x =2. Tiết 3 : Bài 1 : Cho hàm số y = -x3 + 3x2 + 1 1/ Khảo sát sự biến thiên và vẽ đồ thị của hàm số trên. 2/ Viết phương trình tiếp tuyến với đồ thị (C) tại M(1 ;3) 3/ Dùng đồ thị (C) xác định m để phương trình sau có đúng 1 nghiệm duy nhất : 3x2 + 2 – x3 + m = 0 Giải : 1/ Hs tự làm y f(x)=-x^3+3x^2+1 9 f(x)=5 x(t)=2 , y(t)=t 8 7 6 5 4 3 2 1 x -4 -3 -2 -1 1 2 3 4 -1 -2 -3 -4 -5 -6 -7 -8 Đồ thị: -9 2/ Gọi (x0;y0) là toạ độ tiếp điểm x0 = 1; y0 = 3 y ' = −3 x 2 + 6 x y '(1) = 3 4
- Vậy phương trình tiếp tuyến của (C) tại điểm M(1;3) là: y − 3 = 3( x − 1) � y = 3x 3/ Ta có 3 x 2 + 2 − x 3 + m = 0 (1) � − x 3 + 3 x 2 + 1 = − m − 1 Vậy số nghiệm của pt(1) chính là số giao điểm của (C) và đường thẳng d: y = -m-1 Từ đồ thị ta có: � m − 1 < 1 � > −2 − m �m − 1 > 5 � < −6 : d cắt (C) tại 1 điểm − m pt(1) có nghiệm duy nhất. � � m > −2 Vậy pt(1) có nghiệm duy nhất m < −6 Bài 2 : Cho hàm số y = x3 – (1 – 2m)x2 + (2 – m)x + m + 2 (Cm) 1/ Khảo sát sự biến thiên và vẽ đồ thị hàm số trên với m = 1 (C1) 2/ Viết PTTT với đồ thị hàm số (C1) biết tiếp tuyến vuông góc với đường thẳng x + 2y + 1 = 0 3/ Tìm m để hàm số trên có 2 cực trị Giải : 1/ HS tự làm m = 1 � y = x3 + x 2 + x + 3 y f(x)=x^3+x^2+x+3 9 8 7 6 5 4 3 2 1 x -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 -1 -2 -3 -4 -5 -6 -7 -8 Đồ thị -9 1 2/ đường thẳng x + 2y + 1 = 0 có hệ số góc = − 2 Do tiếp tuyến vuông góc với đường thẳng x + 2y + 1 = 0 nên tiếp tuyến có hệ số góc bằng 2 Gọi (x0;y0) là toạ độ tiếp điểm y '( x0 ) = 2 � 3 x0 + 2 x0 + 1 = 2 2 � 3 x0 + 2 x0 − 1 = 0 2 x0 = −1 y0 = 2 1 94 x0 = y0 = 3 27 * PTTT tại ( −1; 2 ) là: y − 2 = 2( x + 1) � y = 2 x + 4 � 94 � 1 94 1 112 * PTTT tại � ; �là: y + = 2( x − ) � y = 2 x − � 27 � 3 27 3 327 3/ Ta có : y = 3 x 2 − 2(1 − 2m) x + 2 − m y = 0 � 3 x 2 − 2(1 − 2m) x + 2 − m = 0(*) Để hàm số có 2 cực trị pt(*) có 2 nghiệm phân bịêt 5
- � (1 − 2m) 2 − 3(2 − m) > 0 � 4m 2 − m − 5 > 0 m < −1 5 m> 4 5 Vậy với m < -1 hoặc m > thì hàm số đã cho có 2 cực trị 4 BTVN: Cho hàm số: y = - x 3 + 3x 2 - 1 có đồ thị là (C ) 1/ Khảo sát sự biến thiên và vẽ đồ thị (C ) của hàm số. 2/ Viết PTTT của đồ thị (C ) tại điểm có hoành độ bằng 2 3/ Dựa vào đồ thị (C ) , hãy tìm điều kiện của tham số k để phương trình sau đây có 3 nghiệm phân biệt: x 3 - 3x 2 + k = 0 Tiết 4 : 1 3 Bài 1: Cho hàm số y = x + ( m − 1) x 2 + x − 1 (Cm) 3 1/ Khảo sát và vẽ đồ thị (C2) của hàm số trên với m = 2 2/ Viết phương trình tiếp tuyến của (C) tại điểm có hoành độ bằng -3 3/ Tìm m để hàm số trên có cực trị Giải: 1/ HS tự làm 1 m=2 y = x3 + x 2 + x − 1 3 Đồ thị: y f(x)=(x^3)/3+x^2+x-1 9 8 7 6 5 4 3 2 1 x -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 -1 -2 -3 -4 -5 -6 -7 -8 -9 2/ Gs tiếp điểm là M0(x0;y0) ,ta có x0 = -3 ⇒ y0 = y( -3) = -4 y ' = x 2 + 2 x + 1 y '(−3) = 4 Vậy phương trình tiếp tuyến cần tìm là: y + 4 = 4(x + 3) y = 4 x + 8 3/ Hàm số có cực trị � y ' = 0 có nghiệm � x 2 + 2(m − 1) x + 1 = 0 có nghiệm 6
- � ∆'�0 � (m − 1) 2 − 1 �0 � m 2 − 2m �0 m 2 m 0 Vậy HS có cực trị khi m 2 hoặc m 0 1 3 Bài 2 : Cho hàm số y = x − x (C) 2 3 1/ Khảo sát sự biến thiên và vẽ đồ thị của hàm số trên. 2/ Tính thể tích của vật thể tròn xoay do hình phẳng giới hạn bởi (C), trục hoành, trục tung và đường thẳng x = 2 khi quay quanh trục Ox. 1 3 3/ Biện luận theo m số nghiệm phương trình x − x = m + 1 2 3 Giải : 1/ Đồ thị : y f(x )=x^3/3-x^2 x(t )=2 , y(t )=t f(x )=-4/3 4 3 2 1 x -4 -3 -2 -1 1 2 3 4 -1 -2 -3 -4 2 1 � 3 2� 2 �7 x x5 � 416π 2 2/ V = π � x − x �dx = π � − 2.2 x 6 − � = 0� 3 � �63 5� 0 315 1 3 3/ x − x 2 = m + 1 (1) 3 Số gnhiệm PT (1) chính là số giao điểm của đồ thị (C ) và đường thẳng y = m + 1 Từ đồ thị ta có : �m + 1 > 0 � > −1 m +/ � � : (1) có 1 nghiệm duy nhất � +1 < − 3 m �
- Tiết 5: Bài 1: Cho hàm số y = x4 - 2x2 + 1 (C) 1/. Khảo sát và vẽ đồ thị (C) của hàm số. 2/ Viết phương trình tiếp tuyến của đồ thị (C) tại điểm có tung độ bằng 1 3/ Dựa vào đồ thị (C) biện luận theo m số nghiệm phương trình: x4 – 2x2 + 2m = 0 Giải: 1/ HS tự làm y f(x)=x^4-2x^2+1 4 3 2 1 x -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 -1 -2 -3 -4 2/ Gọi (x0;y0) là toạ độ tiếp điểm y0 = 1 x0 = 0 y '(0) = 0 x0 là nghiệm pt x − 2 x + 1 = 1 � x − 2 x = 0 � x0 = 2 � y '( 2) = 4 2 4 2 4 2 0 0 0 0 x0 = − 2 y '(− 2) = −4 2 * PTTT tại (0;1) là: y – 1 = 0(x – 0) � y = 1 * PTTT tại ( 2;1) là: y − 1 = 4 2( x − 2) � y = 4 2 x − 7 * PTTT tại ( − 2;1) là: y − 1 = −4 2( x − 2) � y = −4 2 x + 7 3/ Ta có: x4 – 2x2 + 2m = 0 (1) � x 4 − 2 x 2 + 1 = −2m + 1 Khi đó số nghiệm PT(1) chính là số giao điểm của đồ thị (C ) và đường thẳng y = -2m + 1 Từ đồ thị ta có: 1 +/ −2m + 1 < 0 � m > : (1) vô nghiệm 2 1 +/ −2m + 1 = 0 � m = : (1) có 2 nghiệm kép 2 1 +/ 0 < −2m + 1 < 1 � 0 < m < : (1) có 3 nghiệm phân biệt 2 +/ −2m + 1 = 1 � m = 0 : (1) có 3 nghiệm (1 nghiệm đơn, 2 nghiệm đơn phân biệt) +/ −2m + 1 > 1 � m < 0 : (1) có 2 nghiệm phân biệt Bài 2: Cho hàm số y = -x4 + (2m + 1)x2 - 2 ( C m ) 1/ Khảo sát và vẽ đồ thị ( C1 ) của hàm số với m = 1. 2/ Tìm điều kiện của a để phương trình x4 – 3x2 + a = 0 có 4 nghiệm phân biệt. 3/ Tìm điều kiện của m để hàm số có cực đại và cực tiểu. Giải: 4 2 1/ m = 1 thì y = -x + 3x – 2 Đồ thị 8
- y f(x)=-x^4+3x^2-2 9 8 7 6 5 4 3 2 1 x -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 -1 -2 -3 -4 -5 -6 -7 -8 -9 2/ x – 3x + a = 0 (1) � − x 4 + 3 x 2 − 2 = a − 2 4 2 Để PT (1) có 4 nghiệm phân biệt thì đồ thị (C1) cắt đường thẳng y = a – 2 tại 4 điểm phân biệt 1 9 Từ đồ thị ta có : 0 < a − 2 < � 2 < a < 4 4 3/ Ta có y' = -4x3 + 2(2m + 1)x = -2x(2x2 - 2m -1) Để hs có CĐ,CT thì PT y' = 0 phải có 3 nghiệm phân biệt ⇔ 2x2 - 2m- 1 = 0 có 2 nghiệm phân biệt khác 0 −2 m − 1 0 1 � 2m + 1 �m>− >0 2 2 1 Vậy m > − thì hàm số đã cho có cực đại, cực tiểu 2 BTVN :Cho hàm số y = -x4 + 2x2 (C) 1.KS sự biến thiên và vẽ đồ thị (C ) 2.Biện luận theo m số nghiệm thực của phương trình : x4 -2x2 – m =0 3. Viết phương trình tiếp tuyến của đồ thị (C ) tại điểm có tung độ bằng 8 Tiết 6: 1 4 Bài 1 : Cho hàm số y = x − 2 x 2 (C) 4 1/ Khảo sát sự biến thiên và vẽ đồ thị của hàm số trên. 2/ Dựa vào đồ thị (C), hãy xác định các giá trị của tham số m để phương trình x 4 − 8 x 2 − m + 1 = 0 có bốn nghiệm thực phân biệt 3/ Viết PTTT của đồ thị hàm số trên tại điểm M(-2 ;-4) Giải : y f(x)=x^4/4-2x^2 f(x)=-4 x(t)=2 , y(t)=t 8 x(t)=-2 , y(t )=t 6 4 2 x -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 -2 -4 -6 -8 1/ Đồ thị 1 4 m −1 2/ x 4 − 8 x 2 − m + 1 = 0 (*) x − 2x2 = 4 4 9
- PT (*) cã 4 nghiÖm thùc ph©n biÖt, m ph¶i tho¶ m·n m −1 -4 < 15 � m > 14 : (1) vô nghiệm +/ m + 1 = 15 � m = 14 : (1) có 2 nghiệm kép +/ −1 < m + 1 < 15 � −2 < m < 14 : (1) có 3 nghiệm phân biệt +/ m + 1 = −1 � m = −2 : (1) có 3 nghiệm (1 nghiệm đơn, 2 nghiệm đơn phân biệt) +/ m + 1 < −1 � m < −2 : (1) có 2 nghiệm phân biệt 3/ Ta có y = 4 x 3 − 4mx = 4 x( x 2 − m) y = 0 � 4 x( x 2 − m) x=0 x 2 = m (*) Đồ thị (Cm) có 3 cực trị khi & chỉ khi pt (*) có 2 nghiệm phân biệt khác 0 � m > 0 BTVN: Cho hàm số y = - x4 – 3x2 + 4 (C) 1/ Khảo sát sự biến thiên và vẽ đồ thị của hs trên 2/ Viết PTTT của đồ thị hs trên tại điểm có hoành độ bằng -1 3/ Tính diện tích hình phẳng giới hạn bởi đồ thị (C) và trục hoành. Tiết 7 : Bài 1 : Cho hàm số y = (2 – x2)2 (C) 10
- 1/ Khảo sát sự biến thiên và vẽ đồ thị của hàm số trên. 2/ Dựa vào đồ thị (C), biện luận theo m số nghiệm phương trình x4 – 4x2 + 4 = 2m 3/ Viết PTTT của đồ thị hàm số trên tại giao điểm của đồ thị (C ) và trục tung. Giải : 1/ y = (2 – x ) � y = x − 4 x + 4 2 2 4 2 Đồ thị : y f(x)=x^4-4x^2+4 8 6 4 2 x -4 -3 -2 -1 1 2 3 4 -2 -4 -6 -8 2/ x 4 – 4x 2 + 4 = 2m (1) Khi đó số nghiệm (1) chính là số giao điểm của (C) và đường thẳng y = 2m Từ đồ thị ta có : +/ 2m = 0 � m = 0 : (1) có 2 nghiệm kép +/ 0 < 2m < 4 � 0 < m < 2 : (1) có 4 nghiệm phân biệt +/ 2m = 4 � m = 2 : (1) có 3 nghiệm (2 đơn, 1 kép) +/ 2m > 4 � m > 2 : (1) có 2 nghiệm phân biệt +/ 2m < 0 � m < 0 : (1) vô nghiệm 1 4 5 Bài 2 : Cho hàm số y = x − 3x + (C) 2 2 2 1/ Khảo sát sự biến thiên và vẽ đồ thị của hàm số trên. 2/ Dùng đồ thị (C) biện luận theo m số nghiệm phương trình : - x4 + 6x2 + m – 2 = 0 (1) 3/ Viết PTTT của đồ thị hàm số trên biết tiếp tuyến có hệ số góc bằng 4 Giải : 1/ y f(x )=(1 /2)x ^4 -3 x^2 +5 /2 8 6 4 2 x -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 -2 -4 -6 -8 1 4 5 m+3 2/ (1) � x − 3x 2 + = 2 2 2 m+3 Khi đó số nghiệm ( 1) chính là số giao điểm của đồ thị hs trên và đường thẳng y = 2 m+3 5 +/ > � m > 2 : (1) có 2 nghiệm phân biệt 2 2 m+3 5 +/ = � m = 2 : (1) có 3 nghiệm (2 nghiệm đơn, 1 nghiệm kép) 2 2 11
- m+3 5 +/ −2 < < � −7 < m < 2 : (1 có 4 nghiệm phân biệt) 2 2 m+3 +/ = −2 � m = −7 : (1) có 2 nghiệm kép 2 m+3 +/ < −2 � m < −7 : (1) vô nghiệm 2 3/ Gọi (x0;y0) là toạ độ tiếp điểm � y '( x0 ) = 4 � 2 x0 − 6 x0 = 4 3 3 x0 = 2 y0 = − 2 x0 = −1 y0 = 0 * PTTT tại ( −1;0 ) là: y − 0 = 4( x + 1) � y = 4 x + 1 � 3� 3 19 * PTTT tại � − � y + = 4( x − 2) � y = 4 x − 2; là: � 2� 2 2 1 4 BTVN : Cho hàm số y = x + x − 1 2 4 1/ Khảo sát sự biến thiên và vẽ đồ thị của hàm số trên. 2/ Tính diện tích hình phẳng giới hạn bởi đồ thị (C ) và trục hoành 3/ Viết PTTT của đồ thị (C ) biết hoành độ tiếp điểm là -2 Tiết 8: x−2 Bài 1: Cho hàm số y = x −1 1/ Khảo sát và vẽ đồ thị hàm số. 2/ Viết phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ bằng 3. Giải: 1/ HS tự giải 1 2/ Gọi (x0;y0) là toạ độ tiếp điểm x0 = 3 y0 = 2 1 1 y’ = y '(3) = ( x − 1) 2 4 1 1 1 1 Vậy PTTT cần tìm là: y − = ( x − 3) � y = x − 2 4 4 4 2− x Bài 2: Cho hàm số y = 3x + 2 1/ Khảo sát và vẽ đồ thị hàm số. 2/ Viết phương trình tiếp tuyến tại điểm có tung độ bằng 2. Giải: � 2� 1.TX§: R\ � �− �3 −8 −2 SBT: y’ = < 0∀x ( 3x + 2 ) 2 3 12
- 2 2 HSNB/( −� − ) �(− ; +� ; ) 3 3 HS kh«ng cã cùc trÞ Giíi h¹n: lim y = + lim y = − 1 �2� + �2� − lim y = − x − � � �3� x − � � �3� 3 x −2 1 TC§ lµ ®êng th¼ng x = , TCN lµ ®êng th¼ng y = − 3 3 B¶ng biÕn thiªn x − -2/3 + y’ - - + 1 1 y − − − 3 3 y f(x)=(2-x)/( 3x+2) x(t )=-2/3 , y(t )=t f(x)=-1/3 4 3 2 1 x -4 -3 -2 -1 1 2 3 4 -1 -2 -3 -4 2. ViÕt PTTT t¹i ®iÓm sã tung ®é b»ng 2 −2 2− x x =2 3 −2 XÐt Pt 3x + 2 x= 2 − x = 2(3x + 2) 7 − � 2 � 49 � �− = y’ �7 � 8 49 1 PTTT lµ: y = − x+ 8 4 2x − 1 BTVN : Cho hàm số y = x +1 1/ Khảo sát sự biến thiên và vẽ đồ thị của hàm số trên. 2/ Viết PTTT của đồ thị hàm số trên biết tiếp tuyến song song với đường thẳng d : y = 3x + 2 3/ Tính diện tích hình phẳng giới hạn bởi đồ thị hs trên và các trục tọa độ. Tiết 9 : 13
- 3x + 2 Bài 1 : Cho hàm số y = (C) 1− x 1/ Khảo sát sự biến thiên và vẽ đồ thị của hàm số trên. 2/ Tìm m để đường thẳng y = - 2x - m cắt đồ thị hàm số trên tại 2 điểm phân biệt Giải : 1/ HS tự làm 3x + 2 2/ Hoành độ giao điểm của (C ) và y = -2x – m là nghiệm phương trình : = −2 x − m (1) 1− x §k: x 1 (1) 3x + 2 = ( -2x-m) ( 1-x) 2x2 + (m-5)x –( m +2) = 0 (*) §Ó tho¶ m·n yªu cÇu bµi to¸n PT (*) ph¶i cã 2 nghiÖm ph©n biÖt x 1 ∆ = (m − 5) 2 + 8(m + 2) = m 2 − 2m + 41 > 0∀m §s: ∀m 2x +1 Bài 2 : Cho hàm số y = 2− x 1/ Khảo sát sự biến thiên và vẽ đồ thị của hàm số trên. 2/ Viết phương trình tiếp tuyến với đồ thị hàm số trên, biết tiếp tuyến có hệ số góc bằng 5 Giải : 2/ Gọi (x0;y0) là toạ độ tiếp điểm BiÕt hÖ sè gãc cña tiÕp tuyÕn b»ng 5, ta cã: y’(x 0) = 5 5 x0 = 1 y0 = 3 ⇔ =5 ( 2 –x0 )2 = 1 x0 − 4 x0 + 3 = 0 2 ( 2 − x0 ) 2 x0 = 3 y0 = −7 TT thø nhÊt lµ y – 3 = 5(x- 1) y = 5x – 2 TT thø hai lµ y + 7 = 5(x – 3) y = 5x - 22 x −3 BTVN : Cho hàm số y = x−2 1/ Khảo sát sự biến thiên và vẽ đồ thị của hàm số trên. 2/ Tìm tất cả các giá trị của m để đường thẳng d : y = mx + 1 cắt đồ thị (C ) tại 2 điểm phân biệt Tiết 10 : 3 − 2x Bài 1 : Cho hàm số y = (C) x −1 1/ Khảo sát sự biến thiên và vẽ đồ thị của hàm số trên. 2/ Tìm m để đường thẳng y = mx + 2 cắt đồ thị hàm số trên tại 2 điểm phân biệt Giải : 1/ - TXĐ: D = R \ {1} 14
- - Sự biến thiên −1 + Chiều biên thiên: y = < 0; ∀x 1 ( x − 1) 2 Hsố luôn nghịch biến trên các khoảng (− ;1) & (1; + ) + Cực trị: Hsố không có cực trị + Tiệm cận: 3 − 2x Lim = −2 suy ra tiệm cận ngang là đường thẳng y=-2 x x −1 3 − 2x Lim = Suy ra tiệm cận đứng là đường thẳng x=1 x 1 x −1 + Bảng biến thiên: x - 1 + y’ - - -2 + y - -2 - Đồ thị: 2/ Phương trình hoành độ giao điểm của (C) & đương thẳng d : y = mx +2 3 − 2x = mx + 2 � mx 2 − (m − 4) x − 5 = 0(*) x −1 Đường thẳng d cắt (C) tại 2 điểm phân biệt khi & chỉ khi pt(*) có 2 nghiệm phân biệt � m 0 � m 0 � �2 �m − 4) + 20m > 0 � + 12m + 16 > 0 2 ( m m 0 m < −6 − 2 5 m > −6 + 2 5 Bài 2 : Cho hàm số y = -x + 3x 3 1/ Khảo sát sự biến thiên và vẽ đồ thị của hàm số trên. 2/ Dựa vào đồ thị (C) biện luận theo m số nghiệm phương trình : x3 - 3x – 2m + 1 = 0 (1) 3/ Viết PTTT của đồ thị (C ) biết tiếp tuyến song song với đường thẳng y = 2x - 3 Giải : 1/ Đồ thị : 15
- y f(x)=-x ^3+3x 8 6 4 2 x -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 -2 -4 -6 -8 2/ (1) � − x 3 + 3 x = −2m + 1 Vậy khi đó số nghiệm pt (1) chính là số giao điểm của đồ thị (C ) và đường thẳng y = -2m+1. từ đồ thị ta có : 3 m= −2 m + 1 = − 2 2 +/ : (1) có 2 nghiệm (1 đơn, 1 kép) −2 m + 1 = 2 1 m=− 2 3 m> −2 m + 1 < − 2 2 +/ : (1) có 1 nghiệm duy nhất −2 m + 1 > 2 1 m
- Tiết 11 : 2x −1 Bài 1 : Cho hàm số y = (C) x +1 1/ Khảo sát sự biến thiên và vẽ đồ thị của hàm số trên. 2/ Viết phương trình tiếp tuyến với đồ thị (C) tại giao điểm của đồ thị (C ) và trục tung Giải : 1/ HS tự làm 2/ (C) giao trục tung tại điểm (0 ;-1) Gọi (x0;y0) là toạ độ tiếp điểm x0 = 0; y0 = −1 3 y'= y '(0) = 3 ( x + 1) 2 PTTT cần tìm là : y + 1 = 3(x – 0) � y = 3 x − 1 1 3 3 2 Bài 2 : Cho hàm số y = x − x +5 4 2 1/ Khảo sát sự biến thiên và vẽ đồ thị của hàm số trên. 2/ Tìm các giá trị của tham số m để phương trình x3 – 6x2 + m = 0 có 3 nghiệm thực phân biệt 3/ Viết PTTT của đồ thị hàm số trên tại điểm M(2 ;-3) Giải : 1/ HS tự làm Đồ thị: y f(x)=(x^3)/4-3(x^2)/2+5 8 6 4 2 x -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 -2 -4 -6 -8 1 3 3 2 m 2/ XÐt ph¬ng tr×nh x3 - 6x2 + m = 0 x − x +5 = − +5 4 2 4 Ph¬ng tr×nh cã 3 nghiÖm thùc ph©n biÖt m tho¶ m·n m -3
- 2/ Tìm m để đường thẳng y = 2x + m cắt đồ thị hàm số trên tại 2 điểm phân biệt 1 4 3 BTVN : Cho hàm số y = f ( x) = x − 3x 2 + 2 2 1/ Khảo sát sự biến thiên và vẽ đồ thị của hàm số trên. 2/ Viết PTTT của đồ thị (C ) tại điểm có hoành độ là nghiệm phương trình f’’(x) = 0 3/ Biện luận theo m số nghiệm phương trình x4 – 6x2 + 3 = m Tiết 12 : 2x +1 Bài 1 : Cho hàm số y = (C) x−2 1/ Khảo sát sự biến thiên và vẽ đồ thị của hàm số trên. 2/ Viết phương trình tiếp tuyến với đồ thị (C) biết tiếp tuyến song song với đường thẳng y = -5x + 7 3/ Tính thể tích vật thể tròn xoay khi quay hình phẳng giới hạn bởi đồ thị (C), trục hoành, trục tung và đường thẳng x = 1 quanh trục Ox Giải : 1/ HS tự làm 2/ Giả sử M(x0;y0) là tiếp điểm Theo bài ra ta có f ( x0 ) = −5 −5 � = −5 ( x0 − 2) 2 � x0 2 − 4 x0 + 3 = 0 x0 = 1 x0 = 3 Với x0=1 ta có y0= -3 Phương trình tiếp tuyến có dạng: y = -5x +2 Với x0= 3 ta có y0 = 7 Phương trình tuyến có dạng: y = -5x +22 2x +1 1 3/ Phương trình hoành độ giao điểm của (C) là: = 0 � 2x + 1 = 0 � x = x−2 2 Thể tích vât thể cần tìm là: 1 21 2 � x +1 � 2 � 12 9 � V =π�� �dx =π � − �4 + �dx 1� −2 � x 1� x − 2 ( x − 2) 2 � 2 2 1 � 9 � � 3� = π � x − 12 ln x − 2 − 4 � = π � + 12 ln � 17 � x−2�1 � 2� 2 Bài 2: Cho hàm số y = f(x) = -x + 3x + 9x + 2 3 2 1/ Khảo sát sự biến thiên và vẽ đồ thị của hàm số trên. 2/ Viết PTTT của đồ thị (C ) biết tiếp tuyến có hoành độ tiếp điểm x0 là nghiệm phương trình f’’(x0) =-6 18
- Giải: 1/ HS tự làm 2/ f’(x) = -3x2 + 6x + 9 f’’(x) = -6x + 6 f’’(x0) = -6 � −6 x0 + 6 = −6 � x0 = 2 � y0 = 24 Vậy PTTT cần tìm là: y – 24 = -6(x – 2) � y = −6 x + 36 BTVN : Cho hàm số: y = x 4 + (m + 1)x 2 - 2m - 1 (1) 1) Khảo sát sự biến thiên và vẽ đồ thị (C ) của hàm số khi m = 1. 2) Viết phương trình tiếp tuyến của (C ) tại điểm trên (C ) có hoành độ bằng - 3. 3) Tìm các giá trị của tham số m để hàm số (1) có 3 điểm cực trị. Tiết 13 : x+m Bài 1 : Cho hàm số y = (Cm) x−2 1/ Tìm m để (Cm) cắt trục hoành tại điểm có hoành độ -1 2/ Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số trên với m = 1 3/ Viết PTTT của đồ thị (C ) tại giao điểm của đồ thị (C ) và trục hoành Giải : −1 + m 1/ (Cm) cắt trục hoành tại điểm có hoành độ -1 � = 0 � m =1 −1 − 2 x +1 2/ m = 1 y= x−2 Đồ thị y f(x)=(x+1)/(x-2) f(x)=1 x(t)=2 , y(t)=t 4 3 2 1 x -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 -1 -2 -3 -4 3/ (C ) giao trục hoành tại điểm (-1 ;0) Gọi (x0;y0) là toạ độ tiếp điểm x0 = −1; y0 = 0 19
- −3 1 y'= y '(−1) = − ( x − 2) 2 3 −1 1 1 PTTT cần tìm là : y = ( x + 1) � y = − x − 3 3 3 Bài 2 : cho hàm số y = -x3 + 6x2 – 9x (C) 1/ Khảo sát sự biến thiên và vẽ đồ thị của hàm số trên. 2/ Tính diện tích hình phẳng giói hạn bởi đồ thị (C) và đường thẳng y = -x Giải : 1/ - TXĐ : D = R - Sự biến thiên : x =1 + chiều biến thiên : y’ = - 3x2 +12x – 9 = 0 x=3 Hs đồng biến trên khoảng (1 ;3) , nghịch biến trên khoảng ( − ;1) và ( 3; + ) + Cực trị : hs đạt cực đại tại x = 3, yCĐ = 0 , hs đạt cực tiểu tại x = 1, yCT = -4 + Giới hạn : lim y = + ;lim y = − x − x + + Bảng biến thiên : x − 1 3 + y’ - 0 + 0 - + 0 y -4 − - Vẽ đồ thị : Giao Ox : (0 ;0) ; giao Oy : (0 ;0), (3 ;) y f(x)=-x^3+6x^2-9x f(x)=-4 x(t)=1 , y(t)=t 8 6 4 2 x -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 -2 -4 -6 -8 x=0 2/ hoành độ giao điểm của (C) và y = -x là nghiệm pt -x + 6x – 9x = -x � x = 2 3 2 x=4 20
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Ôn thi chuyên đề: Khảo sát hàm số
15 p |
960
|
412
-
Luyện thi đại học môn Toán chuyên đề khảo sát hàm số
40 p |
892
|
358
-
Chuyên đề 2: Khảo sát hàm số
10 p |
434
|
199
-
Chuyên đề luyện thi: Khảo sát hàm số
7 p |
515
|
111
-
Luyện thi đại học - chuyên đề: khảo sát hàm số
10 p |
294
|
66
-
Toán 12: Khảo sát hàm số bậc ba (Đáp án Bài tập tự luyện) - GV. Lê Bá Trần Phương
4 p |
270
|
51
-
Toán 12: Khảo sát hàm số bậc nhất/bậc nhất (Đáp án Bài tập tự luyện) - GV. Lê Bá Trần Phương
0 p |
286
|
38
-
Toán 12: Khảo sát hàm số trùng phương (Đáp án Bài tập tự luyện) - GV. Lê Bá Trần Phương
4 p |
256
|
22
-
Khảo sát hàm số và các bài toán liên quan qua các kì thi tuyển sinh ĐH
4 p |
132
|
18
-
Chuyên đề khảo sát hàm số 40 câu trắc nghiệm chuyên đề khảo sát hàm số
4 p |
109
|
12
-
Toán 12: Khảo sát hàm số bậc nhất/bậc nhất (Bài tập tự luyện) - GV. Lê Bá Trần Phương
1 p |
174
|
10
-
Toán 12: Khảo sát hàm số bậc nhất/bậc nhất (Tài liệu bài giảng) - GV. Lê Bá Trần Phương
2 p |
117
|
6
-
Toán 12: Khảo sát hàm số trùng phương (Bài tập tự luyện) - GV. Lê Bá Trần Phương
1 p |
127
|
6
-
Toán 12: Khảo sát hàm số bậc ba (Tài liệu bài giảng) - GV. Lê Bá Trần Phương
2 p |
134
|
6
-
Toán 12: Khảo sát hàm số bậc ba (Bài tập tự luyện) - GV. Lê Bá Trần Phương
1 p |
173
|
6
-
Toán 12: Khảo sát hàm số trùng phương (Tài liệu bài giảng) - GV. Lê Bá Trần Phương
0 p |
104
|
4
-
Toán 12: Khảo sát hàm số bậc hai/bậc nhất (Bài tập tự luyện) - GV. Lê Bá Trần Phương
0 p |
111
|
4
-
Chuyên đề: Khảo sát hàm số hay và khó
2 p |
112
|
1
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn
