intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Giáo trình Ăn mòn kim loại: Phần 2

Chia sẻ: Lê Thị Na | Ngày: | Loại File: PDF | Số trang:77

261
lượt xem
43
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Phần 2 giáo trình gồm bài học 3 và bài học 4: Ăn mòn điện hóa, các phương pháp bảo vệ chống ăn mòn kim loại. Học xong môn học, học viên có khả năng nắm được kiến thức về ăn mòn hóa học và ăn mòn điện hóa, biết được các nguyên nhân, cơ chế xảy ra và các yếu tố ảnh hưởng đến tốc độ ăn mòn, cũng như các phương pháp bảo vệ tương ứng, hiểu và áp dụng được một số phương pháp chống ăn mòn và bảo vệ kim loại. Tham khảo nội dung giáo trình để nắm bắt nội dung chi tiết.

Chủ đề:
Lưu

Nội dung Text: Giáo trình Ăn mòn kim loại: Phần 2

  1. BÀI 3 ĂN MÒN ĐIỆN HOÁ Mã bài: AMKL 3 Giới thiệu Ăn mòn kim loại làm tổn thất khá lớn nền kinh tế, trong đó quá trình phá hủy kim loại do ăn mòn điện hoá là chủ yếu. Ăn mòn điện hoá là một quá trình phá hủy kim loại bởi các phản ứng oxy hoá – khử dị thể xảy ra đồng thời trên bề mặt kim loại theo cơ chế điện hoá. Vì vậy nó đƣợc nghiên cứu nhiều và đƣa ra những phƣơng pháp và thiết bị chống ăn mòn điện hoá đem lại hiệu quả ngày càng lớn. Mục tiêu thực hiện Học xong bài này, học viên có khả năng: Nắm đƣợc nguyên nhân gây ra ăn mòn điện hoá kim loại. Nắm đƣợc cơ chế và động học của quá trình ăn mòn điện hoá. Nắm đƣợc những yếu tố ảnh hƣởng đến tốc độ ăn mòn điện hoá và cơ chế ăn mòn điện hoá. Nắm vững và vận dụng các biện pháp thực tế chống lại sự ăn mòn. Nắm đƣợc ăn mòn của một số kim loại và hợp kim thƣờng gặp ở các môi trƣờng khác nhau. Thực hiện thí nghiệm về ăn mòn điện hoá. Nội dung 1. Những Vấn đề cơ bản về ăn mòn điện hoá Xét sự làm việc cuả 1 pin Cu-Zn trong 1 dung dịch điện ly, ta thấy miếng kẽm anot mòn dần do hiện tƣợng hoà tan. Nhƣ vậy kẽm đóng vai trò là anot trong pin Cu – Zn, còn đồng đóng vai trò là catot. Anot: Zn - 2e = Zn+2 Catot: 2H+ + 2e = H2 Zn+2/Zn = - 0,76 v Cu+2/ Cu = 0,34 v Trong thực tế quá trình ăn mòn xảy ra trên cùng 1 kim loại, nghĩa là trên đó xảy ra đồng thời quá trình anod và catod và đƣa đến sự phá huỷ kim loại. 39
  2. Hình 3.1: Sơ đồ hệ thống pin ăn mòn Cu – Zn. 1.1 Định nghĩa Ăn mòn điện hoá là quá trình phá hủy kim loại do tác dụng điện hoá giữa kim loại và môi trƣờng. 1.2. Đặc điểm Xuất hiện dòng điện cục bộ. Chỉ xảy ra khi kim loại tiếp xúc trong môi trƣờng chất điện ly. Trong ăn mòn điện hoá có 2 quá trình xảy ra đồng thời đó là quá trình oxy hoá và quá trình khử, 2 quá trình không tiến hành trên cùng 1 chổ. Tốc độ của quá trình ăn mòn kim loại là tổng tốc độ của quá trình ăn mòn của nhiều vi pin cục bộ. Tốc độ của từng vi pin phụ thuộc chủ yếu vào điện thế điện cực. 1.3. Nguyên nhân Xuất hiện các vùng điện thế khác nhau trên bề mặt kim loại dẫn đến sự hoạt động của các vi pin, mà vùng có điện thế điện cực âm hơn là anot (vi anot), vùng có điện thế điện cực dƣơng hơn là catot (vi catot). Vai trò của các vùng có thể thay đổi theo thời gian. Xuất hiện các vùng điện thế khác nhau: do bề mặt không đồng nhất, do các điều kiện môi trƣờng không đồng nhất. 2. Điện thế điện cực 2.1. Điện thế điện cực Quá trình ăn mòn kim loại bởi tác dụng điện hoá là do khả năng ion kim loại tách khỏi bề mặt kim loại và chuyển vào dung dịch. Sự chuyển dịch đó đòi hỏi năng lƣợng để thắng lực hút của các của các điện tử trong kim loại. Năng lƣợng đó là năng lƣợng hoá học của quá trình hydrat hoá. Đối với các kim loại khác nhau thì khả năng để cho các ion của chúng chuyển đƣợc vào dung dịch cũng khác nhau. Khả năng đó đƣợc đặc trƣng bằng độ bền nhiệt động của kim loại. 40
  3. Khi nhúng thanh kim loại vào chất điện ly thì xảy ra sự tác dụng giữa chất điện ly và kim loại, kết quả trên giới hạn phân chia giữa 2 pha sẽ xuất hiện lớp điện tích kép và bƣớc nhảy điện thế gọi là điện thế điện cực. Nguyên nhân xuất hiện nhƣ sau: Chuyển cation từ bề mặt kim loại vào dung dịch, trên bề mặt kim loại dƣ điện tích nên tích điện âm. Giữa các ion kim loại đã tan vào dung dịch mang điện tích dƣơng và bề mặt kim loại mang điện tích âm có lực hút tĩnh điện nên thiết lập một hiệu thế, tạo nên lớp điện tích kép. Nếu trên bề mặt kim loại có thể hấp phụ các cation của dung dịch làm bề mặt kim loại tích điện dƣơng và các anion dƣ trong dung dịch thiết lập một hiệu thế, tạo lớp điện tích kép. Hấp phụ chọn lọc các anion có trong dung dịch hay phân tử lƣỡng cực. Do kết hợp 2 nguyên nhân trên, nghĩa là có sự hấp phụ anion, phân tử có cực hay nguyên tử trên bề mặt kim loại trong điều kiện cation chuyển từ kim loại vào dung dịch hay dung dịch vào kim loại. 2.2. Điện thế điện cực cân bằng và không cân bằng Khi nhúng kim loại vào trong chất điện ly có khả năng xuất hiện điện thế điện cực cân bằng và không cân bằng. 2.2.1. Điện thế điện cực cân bằng Là điện thế xác định ở trạng thái cân bằng nghĩa là chỉ cùng 1 kim loại ion   trao đổi và tốc độ của quá trình anot và catot bằng nhau ( I I ), tổn thất kim loại bằng không (ăn mòn kim loại không xảy ra). Điện thế điện cực cân bằng của kim loại có thể đo đƣợc và tính toán theo phƣơng trình nhiệt động: 0 RT (VMe )TN (VMe )TN lnaMe n (3.1) nF Trong đó: 0 (VMe )TN : điện thế điện cực chuẩn của kim loại. R : hằng số khí. T : nhiệt độ tuyệt đối, 0K. F : số Faraday, F = 96943 C. n : hoá trị của ion kim loại. 41
  4. Hình 3.2: Sơ đồ thiết lập điện thế điện cực cân bằng. 2.2.2. Điện thế điện cực không cân bằng Là điện thế điện cực đƣợc thiết lập ở trạng thái ổn định mà quá trình trao đổi ngoài ion kim loại, có các loại ion khác tham gia quá trình trao đổi. Điện thế điện cực này không tính toán theo phƣơng trình nhiệt động mà chỉ có thể xác định bằng thực nghiệm. Điện thế điện cực xác định đƣợc trong điều kiện ổn định là tổng tốc độ     của các quá trình anot bằng tổng tốc độ của quá trình catot ( I1 I2 I1 I2 ) thì gọi là điện thế ổn định của kim loại. Trong trƣờng hợp này tổn thất kim loại   m 0 : do đó kim loại bị ăn mòn ( I1 I1 ). Hình 3.3: Sơ đồ thiết lập điện thế điện cực không cân bằng. 3. Cơ chế ăn mòn điện hoá và khả năng xảy ra ăn mòn điện hoá 3.1. Cơ chế ăn mòn điện hoá Xét trƣờng hợp khi nhúng 1 thanh kim loại không đồng nhất vào 1 dung dịch điện ly. Do chênh lệch điện thế điện cực (bề mặt kim loại không đồng nhất) mà quá trình điện cực xảy ra đồng thời trên các vùng đó cũng khác 42
  5. nhau, chọn 2 vùng không đồng nhất bất kỳ của thanh kim loại nằm sát nhau ta thấy xảy ra 3 quá trình sau đây: Quá trình anot: là quá trình oxy hoá. Trong trƣờng hợp ăn mòn, ion kim loại từ mạng lƣới tinh thể chuyển ra dung dịch tạo thành ion hydrat hoá, để lại các điện tử tƣơng ứng. Quá trình này xảy ra trên vùng anot theo phản ứng: mH2O Me n.ne Me n.mH2O ne Quá trình catot: là quá trình khử, ở đó các ion, nguyên tử, hoặc phân tử của chất điện ly nhận điện tử trên bề mặt kim loại. Các ion, nguyên tử hoặc phân tử gọi là chất khử cực. Quá trình này xảy ra trên vùng catot theo phản ứng sau: D + ne = [D.ne] Trong đó : D là chất khử phân cực Hình 3.4: Sơ đồ nguyên tắc quá trình ăn mòn điện hoá. Khi 2 quá trình điện cực xảy ra thì đồng thời có sự chuyển động của điện tử từ vùng anod đến vùng catot, trong dung dịch điện ly cũng có sự dịch chuyển của cation và anion tƣơng ứng. Thí dụ: quá trình ăn mòn điện hoá của các nguyên tố ganvanic Cu – Fe và Zn – Fe theo hình vẽ sau đây: Các điện tử dƣ của kim loại từ vùng anot chuyển đều vùng catot để bù vào số điện tử của vùng này bị mất đi do chất khử cực D phản ứng.Kim loại vùng cực dƣơng tiếp tục tan ra thì dòng điện tồn tại. Nhƣ vậy quá trình ăn mòn kim loại xảy ra đồng thời với sự xuất hiện dòng điện giữa 2 vùng khác nhau của thanh kim loại. Vùng kim loại bị hoà tan đóng vai trò cực âm (anot) còn vùng kia đóng vai trò cực dƣơng (catot). Hệ thống 43
  6. trên gọi là nguyên tố ganvanic (pin). Quá trình ăn mòn điện hoá chính là quá trình làm việc của các nguyên tố ganvanic (nguyên tố vi pin). Hình 3.5: Ăn mòn điện hoá giữa các cặp nguyên tố kim loại Cu – Fe và Zn – Fe 3.2. Khả năng xảy ra quá trình ăn mòn điện hoá Trong quá trình ăn mòn điện hoá, muốn cho các quá trình điện cực xảy ra thì điều kiện là biến thiên năng lƣợng tự do của hệ GT 0. GT nETF (3.2) Trong đó : G T : biến thiên năng lƣợng tự do của quá trình ăn mòn. n: số đƣơng lƣợng gam. F: số faraday. ET: sức điện động của nguyên tố ăn mòn thuận nghịch. ET = (VK)TN - (VA)TN (3.3) + (VK)TN: thế điện cực thuận nghịch của điện cực catot ở điều kiện làm việc. + (VA)TN: thế điện cực thuận nghịch của điện cực anot ở điều kiện làm việc. Để quá trình ăn mòn xảy ra thì ET > 0 (do n > 0, F > 0). Từ điều kiện này ta có thể tính đƣợc quá trình ăn mòn điện hoá có hoặc không có khả năng tự xảy ra. 44
  7. Hình 3.6: Sơ đồ ăn mòn pin Cu - Zn 4. Hiện tƣợng phân cực và khử phân cực 4.1. Hiện tƣợng phân cực Nhúng 2 thanh kim loại khác nhau (ví dụ gồm thanh đồng và thanh kẽm) vào 1 dung dịch điện ly (dung dịch NaCl). Đo điện thế điện cực của mỗi kim loại khi hở mạch ta có: VK0 : điện thế của đồng (điện cực catot). VA0 : điện thế của kẽm (điện cực anot). Khi nối 2 cực bằng dây dẫn thì sẽ có dòng điện chạy từ cực dƣơng sang cực âm. Theo định luật ôm, cƣờng độ dòng điện sau khi đóng mạch: VK0 VA0 IM (3.4) R R: điện trở của mạch Sau khi đóng mạch, cƣờng độ dòng điện giảm từ IM I . Do điện trở trong không thay đổi, dòng điện bé hơn chỉ có thể do điện thế điện cực thay đổi Điện thế catot VK0 giảm xuống VK Điện thế anot VA0 tăng lên VA VK VA IM I R VK VK0 VK : đại lƣợng phân cực catot. VA VA0 VA : đại lƣợng phân cực anot. 45
  8. Hình 3.7: Biểu đồ đƣờng cong phân cực Vậy phân cực anot là sự chuyển điện thế anod về phía dƣơng hơn khi có dòng điện anot. Phân cực catot là sự chuyển điện thế catot về phía âm hơn khi có dòng điện catot. 4.2. Hiện tƣợng khử phân cực Những quá trình làm giảm sự phân cực anot và catot, làm cho quá trình anot và catot tiến hành dễ dàng hơn gọi là sự khử phân cực anot hay catot. 5. Phân cực anot - phân cực catot 5.1. Phân cực anot Là hiện tƣợng dịch chuyển của điện thế anot về phía dƣơng hơn làm cho quá trình anot xảy ra khó khăn hơn. Nguyên nhân: Do tốc độ phản ứng ở anod chậm mH2O Me n.ne Me n.mH2O ne Lúc này ion kim loại bị hydrat rồi chuyển vào dung dịch, điện tử chuyển sang vùng catot, nhƣng tốc độ chuyển động điện tử sang vùng catot lớn hơn tốc độ của ion kim loại chuyển vào dung dịch. Kết quả bề mặt điện cực anot tích điện dƣơng, do vậy điện thế anot có trị số dƣơng hơn. Do khuếch tán ion kim loại từ bề mặt vùng anot vào dung dịch chậm, làm giảm quá trình ion hoá kim loại ở điện cực, kết quả làm cho điện thế anot chuyển về phía dƣơng hơn. Nguyên nhân này còn gọi là phân cực nồng độ, và có thể xác định theo phƣơng trình: RT aMe n ( VA )nd ln (3.5) nF aMe n Trong đó: 46
  9. aMe n : hoạt độ của ion kim loại ở sát bề mặt. aMe n : hoạt độ của ion kim loại trong dung dịch. Tạo thành màng thụ động khi trong dung dịch có chứa các chất oxi hoá và không có anion hoạt động (F-, Cl-, I-) ngăn cản quá trình ion hoá kim loại. 5.2. Phân cực catot Là sự chuyển thế điện cực catot về phía âm hơn khi có dòng điện catot, ngăn cản quá trình catot: D + ne D.ne Quá trình khử phân cực catot ăn mòn điện hoá có thể thực hiện bởi các loại chất khử phân cực sau: Ví dụ: 1 H+.H2O + e = H + H2O = H2 + H2O 2 S2O8-2 + 2e = S2O8-4 = 2SO4-2 O2 + 2e + 2H2O = 4OH- Cl2 + 2e = 2Cl- Fe3O4 + 2e + H2O = 3FeO + 2OH- Nguyên nhân: Do tốc độ phản ứng khử ở catot chậm, có nghĩa là tốc độ phản ứng của chất khử cực nhận điện tử chậm hơn tốc độ điện tử từ vùng anot chuyển sang catot, kết quả bề mặt điện cực catot tích điện âm làm cho điện thế điện cực chuyển về phía âm hơn. Do tốc độ chuyển động của chất khử cực D đến bề mặt catot chậm hoặc do sự khuếch tán sản phẩm phản ứng khử từ bề mặt điện cực vào sâu trong dung dịch giảm. Kết quả bề mặt điện cực catod dƣ điện tích âm do đó điện thế điện cực catot chuyển về phía âm hơn. 6. Ăn mòn khử phân cực hyđro và khử phân cực oxy 6.1. Ăn mòn khử phân cực Hyđro 6.1.1. Ăn mòn khử phân cực hyđro và khả năng nhiệt động của nó Quá trình ăn mòn kim loại có khí H2 thoát ra do khử phân cực catot gọi là quá trình ăn mòn khử phân cực hyđro. 1 H+.H2O + e = H + H2O = H2 + H2O 2 Quá trình này thƣờng xảy ra trong môi trƣờng axit 47
  10. Điều kiện xảy ra: (VMe)TN < (VH2 )TN RT aH (VH2 )TN (VH2 )0TN ln 1 (3.6) nF PH 2 2 Trong đó: (VH2 )0TN = 0: điện thế tiêu chuẩn của điện cực hyđro. aH : hoạt độ của ion H+. PH2 : áp suất riêng phần của H2. 6.1.2. Quá trình khử phân cực hyđro Chia làm các giai đoạn sau: Các ion H+ hyđrat hóa (H+.H2O), khuếch tán đến bề mặt catot. Ở catot các ion H+.H2O bị khử thành nguyên tử H có khả năng hấp phụ trên bề mặt kim loại. Một phần nguyên tử hyđro khuếch tán vào bề mặt kim loại vùng catot. Phần lớn nguyên tử hyđro kết hợp tạo phân tử H2. Hhp + Hhp = H2 Các phân tử hyđro khuếch tán vào dung dịch, sau đó khuếch tán ra không khí. Các phân tử hyđro trên bề mặt catot tập hợp tạo thành bọt khí và thoát khỏi bề mặt kim loại. H2 + H2 + ….+ H2 nH2 . Hình 3.8: Sơ đồ quá trình catot khử phân cực hydro. 48
  11. 6.2. Ăn mòn khử phân cực oxy 6.2.1. Ăn mòn khử phân cực oxy và khả năng nhiệt động của nó Quá trình ăn mòn kim loại mà phản ứng khử phân cực catot do ion hóa oxy: O2 + 4e + 2H2O 4OH- Dạng quá trình ăn mòn này rất phổ biến trong thực tế, nó thƣờng xảy ra trong môi trƣờng điện ly trung tính: nƣớc biển, nƣớc sông, trong đất hay trong môi trƣờng axit hoặc kiềm yếu. Điều kiện để xảy ra: (VMe)TN < (VO2 )TN . RT PO2 (VO2 )TN VO02 ln 4 (3.7) 4F aOH Trong đó: VO02 : điện thế tiêu chuẩn của điện cực của oxy. PO2 : áp suất riêng phần của oxy. aOH : hoạt độ của ion OH-. Hình 3.9: Sơ đồ quá trình catot khử phân cực oxy. 6.2.2. Quá trình khử phân cực oxy Quá trình khử phân cực oxy gồm các giai đoạn sau: Oxy trong không khí khuếch tán vào dung dịch điện ly qua bề mặt thoáng của dung dịch.Oxy hòa tan trong dung dịch đƣợc chuyển vận sâu vào trong dung dịch điện ly do khuấy, khuếch tán hay đối lƣu. Chuyển oxy qua lớp Prant (lớp chất điện giải gần bề mặt ăn mòn, có chiều dày P). 49
  12. Chuyển oxy qua lớp khuếch tán của chất điện giải, lớp chất lỏng này có chiều dày , không chuyển động và nằm sát điện cực catot. Ion hóa oxy Trong môi trƣờng trung tính và kiềm: O2 + 4e + 2H2O = 4OH-. Trong môi trƣờng axit: O2 + 4e + 4H+ = 2H2O. Khuếch tán ion OH- từ bề mặt catod vào dung dịch. 7. Xem xét quá trình ăn mòn bằng biểu đồ ăn mòn Từ biểu đồ phân cực ăn mòn của hệ thống, ta có thể xác định đƣợc tốc độ ăn mòn điện hóa, phân tích quá trình ăn mòn điện hóa, nghiên cứu đặc tính ăn mòn và đề ra các phƣơng pháp bảo vệ một cách có hiệu quả. 7.1. Xác định tốc độ ăn mòn điện hóa theo biểu đồ ăn mòn Phƣơng pháp này còn gọi là phƣơng pháp điện hóa. Ở phƣơng pháp này ta có thể tính đƣợc độ tổn thất kim loại trong quá trình ăn mòn và tốc độ ăn mòn. Độ tổn thất kim loại bị ăn mòn ở anod đƣợc xác định theo định luật Farađay: A.q A.I. m (3.8) n.F n.F Trong đó: m : khối lƣợng kim loại bị ăn mòn (g). A: nguyên tử gam của kim loại (g). Q: điện lƣợng chạy từ anot sang catot (C). I: cƣờng độ dòng điện ăn mòn (A) : thời gian (s). N: hóa trị của kim loại trong quá trình ăn mòn. F: hằng số Faraday (F = 96500 C = 96500 A.s). Tốc độ ăn mòn điện hoá đƣợc xác định bằng khối lƣợng kim loại bị ăn mòn trên một đơn vị diện tích trong một đơn vị thời gian. m A.I. A.I A Km .iA (g/m2.s). (3.9) SA . nF. .SA nF.SA nF I Với iA . SA Trong đó: 50
  13. Km: tốc độ ăn mòn điện hóa (g/m2.s). iA: mật độ dòng điện anot (A/m2). SA: diện tích điện cực anod (m2). 7.2. Phân tích quá trình ăn mòn theo biểu đồ ăn mòn Trị số dòng điện ăn mòn đƣợc xác định: VK VA I (3.10) R Trong đó: VK VK0 VK VA VA0 VA Khi mật độ dòng điện i rất nhỏ thì trị số phân cực phụ thuộc vào mật độ dòng điện theo quan hệ: I VA k1.iA (iA ). SA I VK k 2.iK (iK ). SK Thay vào (3.10) ta có: VK0 VA0 VK0 VA0 I (3.11) k1 k 2 R PA PK R S A SK Trong đó: k1 k2 PA ; PK . SA SK PA: độ phân cực riêng của anot. PK: độ phân cực riêng của catot. Sức điện động E hệ thống ăn mòn điện hóa bị giảm do khắc phục 3 trở lực: điện thế rơi VR , đại lƣợng phân cực anot VA , đại lƣợng phân cực catot VK . Biểu diễn mức độ khống chế của các thành phần trở lực so với trở lực chung của hệ thống: PA VA VA CA . (3.12) R PA PK VR VA VK VK0 VA0 PK VK VK CK . (3.13) R PA PK VR VA VK V VA0 0 K 51
  14. PR VR VR CR . (3.14) R PA PK VR VA VK V VA0 0 K Trong đó: CA: mức độ khống chế của anot. CK: mức độ khống chế của catot. CR: mức độ khống chế điện trở của mạch ngoài. Khi hệ thống ăn mòn hoàn toàn phân cực thì CR = 0, khi đó dòng điện ăn mòn là cực đại: VK0 VA0 VK0 VA0 Imax . (3.15) PA PK k1 k2 SA SK Căn cứ biểu thức trên ta thấy trị số dòng điện ăn mòn trong hệ thống phân cực hoàn toàn Imax có thể thay đổi sức điện động của hệ thống hoặc thay đổi độ phân cực. 52
  15. Hình 3.10: Biểu đồ ăn mòn biểu diễn sự thay đổi dòng điện ăn mòn phụ thuộc vào các yếu tố khống chế quá trình. a: thay đổi sức điện động của hệ thống nhờ thay đổi điện cực anot. b: thay đổi sức điện động của hệ thống nhờ thay đổi điện cực catot. c: thay đổi sức điện động của hệ thống nhờ thay đổi độ phân cực catot. d: thay đổi sức điện động của hệ thống nhờ thay đổi độ phân cực anot. e: thay đổi đồng thời độ phân cực anot và catot nhƣng giữ nguyên sức điện động của hệ thống. 8. Hiện tƣợng thụ động - khử thụ động 8.1. Hiện tƣợng thụ động kim loại Khảo sát thí nghiệm: nhúng thanh sắt vào dung dịch HNO3. Giữ nhiệt độ dung dịch không thay đổi. Thay đổi nồng độ axit và đo tốc độ ăn mòn ứng với nồng độ ấy. Kết quả biểu diễn trên giãn đồ. 53
  16. Hình 3.11: Đồ thị biễu diễn sự phụ thuộc của tốc độ ăn mòn sắt vào nông độ HNO3. Từ biểu đồ cho ta thấy khi tăng nồng độ HNO3 thì tốc độ ăn mòn tăng dần và đạt giá trị cực đại ở nồng độ 35% HNO3. Sau đó nếu tăng nồng độ axit thì tốc độ ăn mòn giảm xuống đến gia trị rất nhỏ. Nhƣ vậy sắt đã bị thụ động hóa. Hiện tƣợng thụ động kim loại: là trạng thái khi bề mặt kim loại tiếp xúc môi trƣờng xâm thực tạo thành màng hay lớp hấp thụ ngăn cản quá trình anot hòa tan kim loại. Chú ý: Không phải mọi qúa trình làm chậm ăn mòn đều là quá trình thụ động hóa. Ví dụ: Au, Pt bền trong môi trƣờng xâm thực là do độ bền nhiệt động của bản thân kim loại chứ không phải do thụ động hóa. Khi kim loại bị thụ động hóa có hai đặc điểm sau: Tốc độ ăn mòn của kim loại giảm đi rất nhanh. Điện thế điện cực của kim loại phải chuyển về trị số dƣơng hơn. Ví dụ: Fe: -0,2 -0,5 v +0,5 +1,0 v. Cr: -0,4 -0,6 v +0,9 v. Sự thụ động của kim loại phụ thuộc vào các yếu tố sau: Bản chất kim loại : những kim loại thuộc chu kỳ IV, VI, VIII ở dãy 1 dễ thụ động. Tính chất của môi trƣờng: nồng độ của dung dịch, loại ion trong dung dịch, trạng thái hoạt động của dung dịch, nhiệt độ của dung dịch. Những chất dễ làm cho kim loại bị thụ động là những chất oxy hoá mạnh: NaNO3, NaNO2, K2Cr2O7, KMnO4, KClO3. 8.2. Hiện tƣợng khử thụ động - Sự hoạt hóa: Khi kim loại đã bị thụ động hóa, nếu thay đổi các điều kiện chẳng hạn nhƣ: thành phần dung dịch, nhiệt độ dung dịch thì có thể làm mất trạng thái thụ động. Hiện tƣợng đó gọi là sự khử thụ động. Các yếu tố khử thụ động: Tăng nhiệt độ của dung dịch điện ly làm cho oxi hòa tan trong dung dịch giảm, từ đó làm giảm khả năng tự thụ động của kim loại. 54
  17. Đƣa các chất khử vào để khử màng thụ động, làm mất màng thụ động làm cho kim loại bị hòa tan. Đƣa các ion hoạt động vào dung dịch: H+, Cl-, Br-, I- để phá hủy màng thụ động. Phá hủy màng do tác nhân cơ học. 9. Các thuyết về trạng thái thụ động của kim loại Để giải thích hiện tƣợng thụ động của kim loại, ngƣời ta đƣa ra nhiều thuyết khác nhau, nhƣng có hai thuyết chính: thuyết màng và thuyết hấp phụ. 9.1. Thuyết màng Kim loại ăn mòn do phản ứng ở vùng anot: Me + mH2O Me+n.mH2O + ne Khi kim loại bị thụ động thì quá trình anot trên không xảy ra do hình thành màng bảo vệ trên bề mặt của nó. Màng mỏng này mỏng và không nhìn thấy đƣợc, đó là sản phẩm giữa sự tác dụng kim loại với môi trƣờng thƣờng ở dạng oxyt hay hyđroxyt kim loại: mMe + m.nOH- = Mem(OH)m.n + m.ne m.n mMe m.nOH MemO m.n H2O m.ne 2 2 Màng hình thành này bao phủ toàn bộ bề mặt kim loại hoặc một số vùng hoạt động của kim loại. phần màng phủ này lúc này đóng vai trò là catot, còn bề mặt kim loại chƣa bị bao phủ đóng vai trò là anot. Do diện tích anot giảm, I nên mật độ dòng anot tăng ( iA ) dẫn đến các nguyên tử kim loại ở anot SA bị oxi hóa mạnh, tạo thành ion hóa trị cao. Trong điều kiện của môi trƣờng ăn mòn sẽ tạo sản phẩm dạng oxyt hoá trị cao, không hòa tan và có tính chất bảo vệ. 9.2. Thuyết hấp phụ 9.2.1. Quan điểm hóa học Bề mặt kim loại hấp phụ lớp đơn phân tử oxi, lớp phân tử chất oxi hóa. Lớp hấp phụ đơn phân tử này bao phủ toàn bộ bề mặt kim loại hoặc chỉ những vùng hoạt động nhất. Các phân tử hấp phụ này bám trên bề mặt kim loại, liên kết và làm bảo hòa hóa trị hoạt động của các nguyên tử kim loại, làm giảm khả năng hoạt động của bề mặt kim loại. Lớp hấp phụ đơn phân tử này có tính chất khác với 55
  18. lớp hợp chất đó ở điều kiện thông thƣờng, thƣờing là độ bền hóa học cao hơn. Ví dụ: Sắt thụ động trong dung dịch kiềm do lớp đơn phân tử oxi hấp phụ trên bề mặt nhƣng màng oxyt thƣờng có thể hòa tan trong dung dịch đó. 9.2.2. Theo quan điểm điện hóa Lớp oxi hấp thụ trên bề mặt kim loại sẽ nhận điện tử từ bề mặt kim loại trở thành ion lƣỡng cực, khi đó đầu dƣơng sẽ hƣớng vào kim loại, đầu âm sẽ quay ra ngoài. Lúc này lớp điện tích kép thay đổi, điện thế điện cực chung của kim loại sẽ chuyển về phía dƣơng hơn. Công để thoát kim loại tăng, khuynh hƣớng chuyển ion vào dung dịch giảm. 10. Các yếu tố ảnh hƣởng tới tốc độ ăn mòn điện hóa Có 2 yếu tố chính: Yếu tố bên trong thuộc về kim loại. Yếu tố bên ngoài thuộc về môi trƣờng ăn mòn. 10.1. Các yếu tố bên trong 10.1.1. Độ bền nhiệt động của kim loại Để quá trình ăn mòn có khả năng tự xảy ra khi GT 0 ( G T = -nETF). Lúc này điều kiện ăn mòn xảy ra khi ET > 0, mà ET phụ thuộc vào bản chất của kim loại. Ví dụ: Môi trƣờng trung tính VH02 = -0,41v. Những kim loại nào có điện thế 0 cực âm hơn sẽ bị hòa tan (ăn mòn) trong môi trƣờng trung tính. VZn , VAl0 , VK0 , VNa 0 < VH02 , những kim loại Zn, K, Al, Na…bị hòa tan trong môi trƣờng trung tính. Ag, Cu, Hg không bị hòa tan. Môi trƣờng axit (khử phân cực hydro), VH02 = 0,00v; VFe 0 = -0,44v; 0 VZn = -0,76v; những kim loại Fe, Zn bị hòa tan. Những kim loại có điện thế dƣơng hơn so với VH02 sẽ không hòa tan nhƣ Cu, Ag… 10.1.2. Vị trí của kim loại trong bảng tuần hoàn: Tính chất bền ăn mòn của các kim loại phụ thuộc vào các yếu tố bên trong và yếu tố bên ngoài nên bảng tuần hoàn không thể phản ánh tính bền chung đƣợc mà chỉ nêu lên một số tính chất có qui luật. Trong bảng tuần hoàn Mendelep tính chất hóa học các nguyên tố phụ thuộc vào khối lƣợng nguyên 56
  19. tử, tính chất bền ăn mòn của các nguyên tố cũng tuân theo định luật tuần hoàn và liên quan vị trí của nó trong bảng tuần hoàn. Những kim loại thuộc phân nhóm 1A, 2A độ bền kém, ăn mòn cao, các kim loại thuộc chu kỳ 4, 5, 6 và phân nhóm phụ IVB, VIB, VIIIB thì độ bền nhiệt động của kim loại tăng, đặc biệt các kim loại chuyển tiếp (Os, Ir, Pt) và nhóm IB (Cu, Ag, Au) là các kim loại chịu ăn mòn tốt hơn cả. 10.1.3. Cấu tạo và tính chất của kim loại và hợp kim Các chi tiết máy móc thiết bị trong thực tế thƣờng dùng bằng hợp kim, còn các kim loại nguyên chất rất ít dùng. Do đó độ bền ăn mòn điện hoá của hợp kim không những phụ thuộc vào thành phần hoá học mà còn phụ thuộc vào cấu trúc của nó. Ngƣời ta thƣờng dùng các kim loại dễ bị thụ động hoá làm các nguyên tố hợp kim để tạo các hợp kim sử dụng trong kỹ thuật chống ăn mòn nhƣ Cu, Ni, Si, V… Hợp kim đƣợc chia thành 2 loại: hợp kim đơn pha và hợp kim nhiều pha. Hợp kim nhiều pha: đƣợc tạo thành do các kim loại ở trạng thái rắn kết tinh thành các pha có thành phần hoá học và tính chất vật lý khác nhau. Theo quan điểm ăn mòn điện hoá, độ bền ăn mòn của hợp kim nhiều pha sẽ phụ thuộc vào sự hoạt động của hệ thống nhiều điện cực, nói chung hợp kim này ít bền. Một số trƣờng hợp bền ăn mòn cao nhƣ đồng Silic. Hợp kim đơn pha: có thể là hợp kim ở dạng dung dịch rắn hay hợp chất hoá học. Hợp kim đơn pha ở dạng đơn chất hoá học ít đƣợc sử dụng vì dòn và tính công nghệ kém. Hợp kim là dung dịch rắn dùng phổ biến để chế tạo các thiết bị máy móc chống ăn mòn. Dung dịch rắn này có 2 loại, loại dung dịch rắn lẩn và dung dịch rắn thế, nhƣng nhiều trƣờng hợp do nâng cao tính đồng nhất về cấu tạo chủ yếu là tạo thành dung dịch rắn thế. 10.1.4. Đặc tính của ứng suất Ứng suất hoặc biến dạng trong kim loại có thể xuất hiện trong quá trình gia công chƣa khử bỏ đƣợc hoặc xuất hiện trong quá trình làm việc của máy móc thiết bị. Tốc độ ăn mòn phụ thuộc vào trạng thái ứnh suất, đặc tính biến đổi của ứng suất (tải trọng động). Trạng thái ứng suất: Khi kim loại bị ăn mòn đồng thời chịu tác dụng của ứng suất thì quá trình phá huỷ kim loại xảy ra nhanh hơn rất nhiều. Nguyên nhân do không đồng nhất về ứng suất trong kim loại tạo nên vùng anot. Kim loại ở vùng anot bị hoà tan, màng bảo vệ hình thành trƣớc đó cũng bị phá 57
  20. huỷ, tạo nên những vết nứt có thể nằm ở đƣờng biên tinh thể, vết nứt tiếp tục phát triển thành khe nứt. Trong khe nứt lại dễ dàng hấp phụ các chất có hoạt tính ăn mòn cao làm khe nứt phát triển nhanh hơn đến khi phá hủy kết cấu kim loại. Để tránh nguy cơ nứt nẻ do ăn mòn, ngƣời ta dùng các biện pháp sau: Sử dụng các thép có hàm lƣợng cacbon thấp < 0,2%. Ủ để khử ứng suất còn dƣ sau gia công. Xử lý môi trƣờng Bao phủ bảo vệ. Dùng chất làm chậm ăn mòn. Bảo vệ bằng điện hoá. Đặc tính biến đổi của ứng suất (tải trọng động): Khi chịu tác dụng của tải trọng động thì kim loại bị mỏi. Nếu ứng suất vƣợt quá giới hạn mỏi thì trên bề mặt kim loại sẽ xuất hiện vết nứt. Dƣới tác dụng của ứng suất biến đổi sẽ tạo các khe nứt nhỏ trên bề mặt kim loại làm phá huỷ kim loại một cách nhanh chóng, chứ không phải làm tăng tốc độ ăn mòn nói chung. Đó chính là dạng phá huỷ do ăn mòn các chi tiết máy làm việc chịu tác dụng đồng thời của ứng suất biến đổi và của môi trƣờng ăn mòn: trục khuấy, trục bơm, cánh bơm, tuabin. 10.1.5. Trạng thái bề mặt của kim loại Khi bề mặt kim loại đƣợc gia công phẳng và đánh bóng thì nâng cao độ bền ăn mòn do khả năng tạo thành màng thụ động nhanh chóng hơn, đồng nhất hơn. Vì khi bề mặt kim loại nhẵn bóng thì hơi nƣớc khó ngƣng tụ, các chất ăn mòn khác khó bám đọng, làm giảm diện tích tiếp xúc giữa môi trƣờng và bề mặt kim loại. 10.2. Các yếu tố bên ngoài 10.2.1. Ảnh hƣởng của pH Ảnh hƣởng trực tiếp: độ pH ảnh hƣởng trực tiếp đến tốc độ ăn mòn điện hoá khi ion H+ hoặc ion OH- trực tiếp tham gia vào quá trình điện cực . Khi thay đổi pH thì điện thế điện cực oxy và hydro thay đổi. Kết quả quá trình ăn mòn khử phân cực oxy và khử phân cực hydro thay đổi. Ảnh hƣởng gián tiếp: Thay đổi độ pH có thể hoà tan sản phẩm ăn mòn hay tạo thành màng bảo vệ trên bề mặt điện cực. Sự phụ thuộc của tốc độ ăn mòn điện hoá vào độ pH của môi trƣờng đối với các kim loại đƣợc chia thành 3 nhóm: 58
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2