intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Giáo trình Địa chất đại cương - TS. Vũ Như Hùng

Chia sẻ: Wilbur Leo | Ngày: | Loại File: PDF | Số trang:253

428
lượt xem
88
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Khái niệm về Địa chất học Cụm từ “Địa chất học” xuất phát từ chữ Hylạp geologia (geo: Trái Đất và logia: nghiên cứu hoặc khoa học). Như vậy địa chất học là môn khoa học nghiên cứu về quy luật hình thành, phát triển, biến đổi của Trái Đất

Chủ đề:
Lưu

Nội dung Text: Giáo trình Địa chất đại cương - TS. Vũ Như Hùng

  1. TẬP ĐOÀN DẦU KHÍ VIỆT NAM TRƯỜNG ĐẠI HỌC DẦU KHÍ VIỆT NAM Người biên soạn: TS. Vũ Như Hùng
  2. Chương 1 ĐẠI CƯƠNG VỀ ĐỊA CHẤT HỌC 1.1. Khái niệm về Địa chất học Cụm từ “Địa chất học” xuất phát từ chữ Hylạp geologia (geo: Trái Đất và logia: nghiên cứu hoặc khoa học). Như vậy địa chất học là môn khoa học nghiên cứu về quy luật hình thành, phát triển, biến đổi của Trái Đất và các yếu tố của nó trong quá khứ, hiện tại. Những nhà khoa học nghiên cứu về các vấn đề trên được gọi là nhà địa chất (geologist). Các nhà địa chất tiến hành nghiên cứu ở khắp nơi trên Trái Đất từ những miền núi cao, băng giá, tới đáy đại dương. Những công việc của họ là nhằm hiểu biết tất cả các quá trình xảy ra trên Trái Đất và giải đoán lịch sử phát triển lâu dài và phức tạp của Trái Đất. Các quá trình nghiên cứu của các nhà địa chất tuân theo tất cả các quy luật tự nhiên được các nhà vật lý, hoá học, và toán học phát hiện. Địa chất học cũng là một ngành có tính thực tiễn đặc biệt vì nó là khoa học nghiên cứu về Trái Đất mà chúng ta đang sống, và những kết quả nghiên cứu có thể được kiểm chứng hoặc dựa trên những bằng chứng thực tế mà từ đó đem lại hiểu biết về các hành vi của Trái Đất. 1.2. Đối tượng và nhiệm vụ của Địa chất học Địa chất học được chia thành nhiều nhánh nghiên cứu khác nhau trong đó có địa chất cơ sở (general geology) và địa chất lịch sử (historical geology). Địa chất cơ sở nghiên cứu các quá trình địa chất xảy ra trên hoặc bên dưới bề mặt Trái Đất và các vật chất bị chúng tác động. Địa chất lịch sử nghiên cứu về trình tự thời gian mà các sự kiện, cả tự nhiên và sinh học đã xảy ra trên Trái Đất trong quá khứ. Ngoài ra phụ thuộc vào đối tượng nghiên cứu cụ thể mà các nhánh đó lại được chia ra thành nhiều môn khác nhau, ví dụ như: - Các môn khoa học địa chất nghiên cứu về thành phần vật chất của vỏ Trái Đất: khoáng vật học, thạch học.. - Các môn nghiên cứu về các quá trình hình thành các loại đá khác nhau: địa tầng học, trầm tích luận, thạch học đá magma, thạch học đá biến chất… - Các môn nghiên cứu về vận động của vỏ Trái Đất: địa chất cấu tạo, địa kiến tạo, địa mạo, tân kiến tạo… - Các môn nghiên cứu về các loại khoáng sản, tiềm năng của chúng và phương pháp thăm dò và khai thác chúng: khoáng sản học, địa chất thủy văn, tìm kiếm thăm dò khoáng sản, địa vật lý, kinh tế địa chất, khoan thăm dò. - Các môn nghiên cứu về môi trường và tai biến địa chất: địa chất môi trường … - Các môn nghiên cứu về điều kiện địa chất để xây dựng công trình: địa chất công trình, địa kỹ thuật. Một đối tượng nghiên cứu quan trọng của địa chất học và có mặt trong tất cả các nhánh hoặc môn khoa học địa chất là các loại đá (rocks). Đá là một tổ hợp cộng sinh tự nhiên của các khoáng vật được hình thành trong vỏ Trái Đất trong một điều kiện địa chất nhất định và tạo thành một phần của các hành tinh. Tóm lại, địa chất học tập trung nghiên cứu: cấu trúc, đặc điểm vật lý, động lực, lịch sử của các vật liệu trên Trái Đất, kể cả các quá trình hình thành, vận chuyển, biến đổi của các vật liệu này. 1.3. Mối quan hệ của Địa chất học với các ngành khoa học khác Vì địa chất học là ngành khoa học nghiên cứu về Trái Đất, nó bao gồm việc nghiên cứu tất cả các hoạt động, quá trình và sự phát triển theo thời gian của các đối tượng địa chất trong 1
  3. những điều kiện vật lý, hóa học, sinh học và các điều kiện tự nhiên khác vô cùng phức tạp. Do đó địa chất học có mối quan hệ khăng khít với hầu hết các ngành khoa học khác như: vật lý, hóa học, toán học, cơ học, sinh vật học. Địa chất học không những sử dụng thành quả của các nghiên cứu này mà còn bổ sung các dữ liệu và kiểm chứng những kết quả của các nghiên cứu đó. Mối liên hệ giữa địa chất học và các môn khoa học cơ bản còn được thể hiện bởi sự ra đời của một loạt các môn khoa học có tính chất liên kết với mục đích giải quyết các vấn đề của địa chất học như: địa hoá học, địa vật lý, toán địa chất, tin học địa chất… 1.4. Ý nghĩa của nghiên cứu địa chất đối với cuộc sống con người Việc nghiên cứu địa chất có ý nghĩa thực tiễn quan trọng với mục đích cuối cùng là phục vụ đời sống của con người. Cuộc sống của muôn loài phụ thuộc vào môi trường xung quanh và môi trường đó được quyết định bởi các quá trình địa chất trên mặt hoặc bên trong Trái Đất. Do đó mức độ hiểu biết của chúng ta về hành vi của các quá trình địa chất sẽ quyết định tương lai của nhân loại nhờ những dự báo và tiên đoán của chúng ta. Để có thể dự đoán được những gì sẽ xảy ra trong tương lai, chúng ta phải hiểu rõ rất cả về vật chất của Trái Đất và các quá trình địa chất. Tất cả nguồn tài nguyên mà chúng ta đang sử dụng đều đến từ Trái Đất, do đó việc nghiên cứu và hiểu biết rõ quy luật phân bố, trữ lượng tài nguyên (khoáng sản, nước dưới đất…) có mặt bên trong và trên mặt đất và ý nghĩa của chúng đối với cuộc sống con người sẽ giúp chúng ta định hướng được sự phát triển thông qua việc khai thác và sử dụng tài nguyên hợp lý. Vì toàn bộ các kết cấu do con người tạo ra (nhà cửa, đường xa, cầu cống, sân bay, thủy điện…) đều được đặt trên nền móng là phần trên cùng của Trái Đất nên độ an toàn và ổn định của chúng sẽ phụ thuộc hoàn toàn vào sự hiểu biết về đặc điểm của nền móng này thông qua việc nghiên cứu địa chất. Tất cả các tai biến đã, đang và sẽ xảy ra đều có nguồn gốc từ các hoạt động của Trái Đất. Có thể một ngày nào đó chúng ta học được cách để khống chế các thiên tai, nhưng hiện tại điều tốt nhất ta có thể làm được đó là dự đoán các thiên tai đó sẽ xảy ra khi nào và ở đâu để chuẩn bị đối phó nếu chúng xảy ra. Để có thể dự đoán được chính xác các hiện tượng tự nhiên đó, ta phải biết được sự thay đổi có thể xảy ra và các dấu hiệu của nó thông qua việc nghiên cứu các quá trình địa chất. 1.5. Xu thế phát triển của Địa chất học Cùng với sự tiến bộ vượt bậc của nghiên cứu khoa học trong thế kỷ 20 và đầu thế kỷ 21, ngành địa chất học thế giới cũng đang đứng trước những cơ hội và thử thách mới. Với sự ứng dụng ngày càng tăng các thành tựu của khoa học công nghệ trong nghiên cứu địa chất, địa chất học ngày càng được định lượng hóa cả ở tầm vĩ mô và vi mô. Việc nghiên cứu địa chất ngày càng được chính xác hóa và những kết quả nghiên cứu ngày càng tiệm cận với quy luật thực tế của các quá trình địa chất, cả trong quá khứ và hiện tại. Việc nghiên cứu địa chất không chỉ được thúc đẩy trên đất liền mà còn được tiến hành rộng rãi trên biển và dưới đáy đại dương, và tiến sâu hơn vào các phần sâu hơn của Trái Đất. Hơn thế nữa, việc nghiên cứu địa chất đang được tiến hành với quy mô ngày càng tăng vào mối quan hệ giữa Trái Đất với các hành tinh khác trong hệ Mặt Trời, và bản chất địa chất của các hành tinh cũng như của vũ trụ đã hình thành môn địa chất vũ trụ. 1.6. Các phương pháp nghiên cứu trong Địa chất học Cũng như các môn khoa học khác, địa chất học sử dụng một tổ hợp các phương pháp nghiên cứu theo logic khoa học tự nhiên là đi từ việc quan sát, thu thập thông tin, xử lý dữ liệu, 2
  4. tổng hợp và tìm ra các quy luật, xây dựng các giả thuyết, và kiểm chứng kết quả. Tuy nhiên, do đặc thù của địa chất học là đối tượng nghiên cứu của nó có không gian rất đa dạng, từ các lục địa tới các hạt khoáng vật hoặc nhỏ hơn và có một lịch sử hình thành và phát triển rất lâu dài và phức tạp dưới các điều kiện hoá lý khác nhau trong quá khứ, nên việc nghiên cứu địa chất có nhiều nét đặc thù riêng. Nhìn chung việc nghiên cứu địa chất bao gồm một tổ hợp các phương pháp sau: - Các phương pháp thực địa: khảo sát địa chất, thu thập thông tin (số liệu địa chất, lấy mẫu…) thông qua quan sát bằng mắt thường hoặc sử dụng các máy móc hiện đại (địa vật lý, khoan, viễn thám…). - Các phương pháp trong phòng bao gồm việc phân tích dữ liệu địa chất, phân tích mẫu, tổng hợp số liệu, mô phỏng thực nghiệm, suy đoán và đối sánh (lấy mới soi cũ…) và mô hình hóa. Các nhà địa chất sử dụng các phương pháp thực địa, phân tích trong phòng thí nghiệm và mô hình số để giải mã lục sử Trái Đất và hiểu các quá trình xảy ra trên Trái Đất. Trong quá trình khảo sát địa chất, các nhà địa chất thường dùng các thông tin nguyên thủy liên quan đến thạch học (nghiên cứu về các loại đá), địa tầng học (nghiên cứu các lớp trầm tích), và địa chất cấu tạo (nghiên cứu về thế nằm và sự biến dạng của đá). Trong một số trường hợp, các nhà địa chất cũng nghiên cứu đất, sông, địa hình, băng hà; khảo sát sự sống hiện tại, quá khứ, các chu trình địa hóa và sử dụng các phương pháp địa vật lý để khảo sát phần bên dưới mặt đất. 1.6.1. Các phương pháp thực địa Công việc khảo sát địa chất thực tế hay thực địa thay đổi tùy theo nhiệm vụ được giao (đặt ra). Các công việc thông thường bao gồm: a- Lập bản đồ địa chất - Bản đồ cấu trúc: xác định vị trí của các thành tạo đá chính và các đứt gãy, nếp uốn. - Bản đồ địa tầng: xác định vị trí của các tướng trầm tích (tướng thạch học, tướng sinh học) hoặc lập bản đồ đẳng dày của các lớp đá trầm tích. Cắm trại tại khu vực đo vẽ bản đồ của USGS thập niên 1950 b- Khảo sát các đặc điểm địa hình - Lập bản đồ địa hình - Khảo sát sự thay đổi của địa hình cảnh quan (các dạng xói mòn và tích tụ, sự thay đổi lòng sông tạo ra khúc uốn, thay đổi mực xâm thực cơ sở, các quá trình sườn ...). 3
  5. Ngày nay máy tính xách tay kèm với GPS và phần mềm hệ thống thông tin địa lý thường được sử dụng trong công tác khảo sát thực tế c- Lập bản đồ dưới bề mặt bằng phương pháp địa vật lý (để tìm kiếm dầu khí, nước ngầm, xác định vị trí các kiến trúc cổ bị chôn vùi ...), bao gồm: khảo sát bằng sóng địa chấn ở độ sâu nông, thẩm thấu radar mặt đất, ảnh điện trở. d- Địa tầng học phân dải cao: đo đạc và mô tả các mặt cắt địa tầng trên bề mặt và khoan, đo đạc trong giếng khoan. e- Sinh địa hóa học và vi sinh địa học: thu thập mẫu để xác định các đường sinh hóa, các tổ hợp loài mới, các hợp chất hóa học mới nhằm hiểu rõ thêm về tiến trình của sự sống trước đây trên Trái Đất, tìm kiếm các hợp chất quan trọng để sử dụng trong dược phẩm. f- Cổ sinh vật học: xác định các hóa thạch để nghiên cứu sự sống trong quá khứ và sự tiến hóa của nó, trưng bày trong bảo tàng. g- Thu thập mẫu để nghiên cứu Niên đại địa chất h- Nghiên cứu băng hà: đo đạc các đặc điểm của băng hà và sự di chuyển của chúng. 1.6.2. Các phương pháp trong phòng thí nghiệm: a- Thạch học: xác định các mẫu đá dưới kính hiển vi quang học (xác định các thuộc tính khác nhau của các khoáng vật tạo đá bởi ánh sáng phân cực xuyên qua lát mỏng trên mặt phẳng phân cực) và dưới kính hiển vi điện tử (xác định sự thay đổi thành phần hóa học của các tinh thể khoáng vật riêng lẻ). Các nghiên cứu về đồng vị phóng xạ sau khi xác định thành phần thạch học giúp hiểu hơn về thành phần vật chất bên trong, cũng như sự tiến hóa về địa hóa của các loại đá. Các dữ liệu về nhiệt độ và áp suất của các bao thể trong đá sau khi nghiên cứu thạch học của đá giúp ta khôi phục lại môi trường và điều kiện thành tạo của các pha tạo khoáng khác nhau. b- Địa chất cấu tạo: Các nhà địa chất cấu tạo sử dụng phương pháp phân tích thạch học lát mỏng để quan sát cấu tạo thớ nứt của đá vì chúng cung cấp thông tin về ứng suất bên trong cấu trúc tinh thể khoáng vật của đá. Kết quả nghiên cứu trên kết hợp các đo đạc về địa chất cấu tạo cho ta hiểu rõ hơn xu hướng của đứt gãy hoặc nếp uốn để hồi phục lại lịch sử biến dạng đá của một khu vực hay rộng hơn là lịch sử phát triển kiến tạo của khu vực. 4
  6. Các phân tích về cấu tạo thường được tiến hành bằng cách vẽ đồ thị xu hướng về các đặc điểm biến đổi trên lưới chiếu nổi. Lưới chiếu nổi là một lưới chiếu hình cầu được thể hiện trên mặt phẳng, trên lưới này các mặt phẳng được biểu diễn thành những đường thẳng và các đường thẳng được biểu biễn thành các điểm. Lưới này có thể được sử dụng để tìm vị trí của các trục nếp uốn, quan hệ giữa các đứt gãy, và quan hệ giữa các cấu tạo địa chất khác nhau. c- Địa tầng học: Trong phòng thí nghiệm, các nhà địa tầng học phân tích các mẫu trong các mặt cắt địa tầng được thu thập từ các lộ trình khảo sát địa chất, từ các mẫu lõi giếng khoan. Dữ liệu địa vật lý và log lỗ khoan cũng được kết hợp để mô phỏng theo không gian ba chiều trên máy tính để giúp hiểu rõ hơn về các đặc điểm bên dưới mặt đất. Sau đó, các dữ liệu này được sử dụng để tái lập lại các quá trình trong quá khứ đã diễn ra trên bề mặt của Trái Đất và giải đoán đặc điểm các môi trường này trong quá khứ. Trong phòng thí nghiệm, các nhà sinh địa tầng học phân tích các mẫu đá lộ ra trên mặt và các mẫu lõi trong các giếng khoan để tìm kiếm các hóa thạch. Các hóa thạch này giúp các nhà khoa học định tuổi của đá chứa nó và biết được môi trường trầm tích của đá đó. Các nhà địa thời học xác định chính xác tuổi đá trong mặt cắt địa tầng nhằm cung cấp các ranh giới tuổi tuyệt đối chính xác hơn về thời gian và tốc độ trầm tích. Các nhà từ địa tầng học cũng dùng dấu hiệu đảo cực từ trong lõi khoan của các đá magma để định tuổi của đá. Các nhà khoa học khác nghiên cứu các đồng vị ổn định trong các đá cũng nhằm cung cấp thêm thông tin về khí hậu trong quá khứ. Chương 2 KHÁI QUÁT VỀ HỆ MẶT TRỜI 2.1. Giới thiệu về hệ Mặt Trời Sơ đồ hệ Mặt Trời A- Tương quan về kích thước của các thiên thể trong hệ Mặt Trời. B- Sơ đồ vị trí quỹ đạo của hệ Mặt Trời (Wicander R. & Monroe J. S., 1993) 5
  7. Hình 1. Vị trí và quan hệ của các hành tinh của hệ Mặt Trời mà Trái Đất là một thành viên. Tất cả các đối tượng đó di chuyển trong vũ trụ với các quỹ đạo ổn định và ở trạng thái cân bằng trong vũ trụ nhờ lực hấp dẫn. Các hành tinh, tiểu hành tinh, hoặc thiên thạch di chuyển quanh Mặt Trời trong khi các vệ tinh lại xoay quanh các hành tinh. Các nhà khoa học chia các hành tinh thành 2 loại dựa vào mật độ và khoảng cách tới Mặt Trời: a)- Các hành tinh đất (terrestrial planets: terra tiếng Latin là Earth - Trái Đất) và b)- Các hành tinh khí (Jovian = Jove thần Jupiter). Hệ Mặt Trời (hay Thái Dương Hệ) mà Trái Đất đang tồn tại là một bộ phận của Ngân hà. Ngân hà lại là một phần nhỏ của Thiên hà, mà Thiên hà lại là một bộ phận của một Siêu Thiên hà trong vũ trụ. Trong vũ trụ có vô số hệ Thiên hà và các nhà khoa học đã ước tính có khoảng 10 tỷ trong đó hệ Thiên hà xa nhất có thể quan sát được cách chúng ta khoảng 10 tỷ năm ánh sáng. Hành tinh (planet) là các thiên thể dưới cấp sao, có khối lượng nhiều lần nhỏ hơn các sao. Khối lượng của chúng không đủ để tạo ra các phản ứng tổng hợp hạt nhân giúp chúng phát sáng được như các ngôi sao nên hành tinh là các thiên thể tối. Chúng chuyển động quanh ngôi sao theo các quĩ đạo hình elip với chu kì xác định. Hệ Mặt Trời là một hệ hành tinh có Mặt Trời ở trung tâm và các thiên thể nằm trong phạm vi lực hấp dẫn của Mặt Trời; tất cả chúng được hình thành từ sự bùng nổ của một đám mây phân tử khổng lồ cách đây gần 4,6 tỷ năm. Hệ Mặt Trời gồm có 8 hành tinh tính từ trong (gần Mặt Trời nhất) ra gồm: Sao Thuỷ (Mercury), Sao Kim (Venus), Trái Đất (Earth), Sao Hoả (Mars), Sao Mộc (Jupiter), Sao Thổ (Saturn), Sao Thiên Vương (Uranus) và Sao Hải Vương (Neptune). Trước đây chúng ta còn biết đến hành tinh thứ 9 là Sao Diêm Vương (Pluto). Tuy nhiên đến tháng 8 năm 2006 (theo Quyết định của Hiệp hội thiên văn quốc tế - IAU), hành tinh này đã được xét lại và với các yếu tố về khối lượng, đường kính và khả năng phản chiếu ánh sáng quá thấp so với 8 hành tinh còn lại, Sao Diêm Vương đã bị loại ra khỏi danh sách các hành tinh của Hệ Mặt Trời. Nó được đưa vào một nhóm thiên thể mới gọi là các “hành tinh lùn” (dwarf planet). Hiện nay nhóm này gồm có 3 thành viên là Pluto, Ceres - tiểu hành tinh lớn nhất trong vành đai tiểu hành tinh, và 2003UB313 - một thiên thể được phát hiện năm 2003 tại vành đai Kuiper. Đây là các thiên thể được coi là trung gian giữa hành tinh và tiểu hành tinh. Chúng không đủ khối lượng, đường kính và khả năng phản chiếu ánh sáng để trở thành hành tinh nhưng lại … quá lớn so với kích cỡ trung bình của các tiểu hành tinh. Quyết định được đưa ra sau khi các nhà khoa học thống nhất những tiêu chí để phân loại một thiên thể là một hành tinh: a)- nó phải bay trong quỹ đạo quanh Mặt Trời; b)- nó phải đủ lớn để có hình dạng gần tròn; c)- quỹ đạo của nó phải tách bạch với các vật thể khác. Theo những tiêu chí này, sao Diêm Vương đã tự mình rơi khỏi bảng xếp loại bởi quỹ đạo hình elip dẹt của nó cắt qua quỹ đạo của sao Hải Vương. Như vậy hệ Mặt Trời của chúng ta bao gồm: Mặt Trời, 8 hành tinh và nhiều vệ tinh, một số lượng khổng lồ các tiểu hành tinh (asteroid), sao chổi (comet), và thiên thạch (meteorites). Đa phần các thiên thể quay quanh Mặt Trời, và khối lượng tập trung chủ yếu vào 8 hành tinh có quỹ đạo gần tròn và mặt phẳng quỹ đạo gần trùng khít với nhau gọi là mặt phẳng hoàng đạo. Bốn hành tinh nhỏ vòng trong (nhóm trong) gồm: Sao Thủy, Sao Kim, Trái Đất và Sao Hỏa - người ta cũng còn gọi chúng là các hành tinh đá do chúng có thành phần chủ yếu từ đá và kim loại. Bốn hành tinh khí khổng lồ vòng ngoài (nhóm ngoài) có khối lượng lớn hơn rất nhiều so với 4 hành tinh vòng trong. Hai hành tinh lớn nhất là Sao Mộc và Sao Thổ có thành phần chủ yếu từ heli và hiđrô; và hai hành tinh nằm ngoài cùng, Sao Thiên Vương và Sao Hải 6
  8. Vương có thành phần chính từ băng, như nước, amoniac và mêtan, và đôi khi người ta lại phân loại chúng thành các hành tinh băng đá khổng lồ. Hai nhóm hành tinh ngăn cách nhau bởi một vành đai tiểu hành tinh (asteroid) và vô số các thiên thạch nhỏ cùng quay quanh Mặt Trời. Có sáu hành tinh và ba hành tinh lùn có các vệ tinh tự nhiên quay quanh. Các vệ tinh này được gọi là "Mặt Trăng" theo tên gọi của Mặt Trăng của Trái Đất. Mỗi hành tinh vòng ngoài còn có các vành đai hành tinh chứa bụi, hạt và vật thể nhỏ quay xung quanh. Mặt Trời, các hành tinh và hành tinh lùn trong hệ Mặt Trời Mặt Trời phát ra các dòng vật chất plasma, được gọi là gió Mặt Trời, dòng vật chất này tạo ra một bong bóng gió sao trong môi trường liên sao gọi là nhật quyển, nó mở rộng ra đến tận biên giới của đĩa phân tán. Đám mây Oort giả thuyết, được coi là nguồn cho các sao chổi chu kỳ dài, có thể tồn tại ở khoảng cách gần 1.000 lần xa hơn nhật quyển. Các hành tinh đất (sao Thủy - Mercury, sao Kim - Venus, Trái Đất - Earth, sao Hỏa - Mars) là những hành tinh gần Mặt Trời, nhỏ, rắn chắc, cấu tạo bởi các loại đá, có mật độ cao (? 3 g/cm2). Thành phần của chúng tương đối giống nhau. 7
  9. Các hành tinh khí (Jupiter, Saturn, Uranus, Neptune, Pluto) là những hành tinh ở xa Mặt Trời hơn, có kích thước lớn nhưng mật độ thấp. Chúng có thể có phần nhân cứng như của các hành tinh đất nhưng phần lớp khối lượng của chúng là một lớp khí quyển dày cấu tạo bởi Hydrô, Heli và các loại khí khác. Bầu khí quyển này có thể quan sát được từ mặt đất. 2.2. Các đặc điểm cơ bản của hệ Mặt Trời Hệ Mặt Trời có ba đặc trưng cơ bản sau đây: - Tất cả các hành tinh quay quanh Mặt Trời trong cùng một hướng, trừ sao Diêm Vương hầu hết các hành tinh đều nằm trên cùng một mặt phẳng qua xích đạo của Mặt Trời. Thêm vào đó, hầu hết các hành tinh đều quay quanh trục của chúng cùng với chiều quay của Mặt Trời và hầu hết các vệ tinh cũng di chuyển trên những quỹ đạo ngược chiều với chiều quay kim đồng hồ. - Sao Mộc và sao Thổ có thành phần cấu tạo tương tự như Mặt Trời và các vì sao khác, chủ yếu từ Hydro và Heli. So sánh thành phần cấu tạo của các thiên thể trong Hệ Mặt Trời cho thấy tiến trình phát triển rõ rệt từ các hành tinh bên trong được cấu tạo từ đá giàu kim loại cho đến các hành tinh bên ngoài được tạo thành chủ yếu từ băng tuyết. Các sao chổi cũng là những vật thể băng tuyết, trong khi các tiểu hành tinh lại tượng trưng cho thành phần đá giàu cacbon. - Định tuổi bằng phương pháp phóng xạ xác nhận một số mẫu đá trên vỏ Trái Đất đã được hình thành ít nhất từ 3,8 tỉ năm trước và các mẫu đá từ mặt trăng khoảng 4,2 tỉ năm tuổi. Một số thiên thể có tuổi từ 4,5 đến 4,6 tỉ năm, phù hợp với các tính toán về tuổi của Mặt Trời. 2.3. Nguồn gốc của hệ Mặt Trời Khoảng không bao la giữa các vì sao có vẻ như trống rỗng nhưng thực sự không phải vậy, chúng chứa rất nhiều những hạt cực nhỏ và các nhà khoa học cho rằng hệ Mặt Trời được hình thành từ một đám tinh vân là tàn dư của những quá trình hình thành những vì sao trước đó hay do vật chất sau các vụ nổ siêu tân tinh. Đám mây ấy gồm những khí và bụi. Những hạt nhỏ nhiều vô kể trong khi chuyển động va chạm vào nhau và vì vậy chúng có khuynh hướng chuyển động sao cho không cản trở lẫn nhau. Muốn như thế thì tất cả các đường đi của chúng phải nằm ở gần một mặt phẳng và trở thành đường tròn. Khi quay theo những đường tròn đường kính khác nhau chúng sẽ không va chạm vào nhau nữa. Khi đó chuyển động theo một chiều nhất định nào đó sẽ thắng thế và rốt cuộc các hạt nhỏ khác cũng sẽ quay theo chiều đó. Như vậy thay thế cho chuyển động hỗn độn ban đầu của các hạt nhỏ, xuất hiện chuyển động có trật tự và toàn thể đều quay theo cùng một chiều. Sau đấy đám mây bắt đầu được hâm nóng lên bởi chính năng lượng hấp dẫn và vận tốc quay nhanh của nó. Khi nhiệt độ tăng, các chất rắn ban đầu bị bốc hơi. Đám mây bây giờ dần dần trở thành cái đĩa dẹt. Ở tâm của đĩa dẹt ấy, vật chất gom tụ lại cho đến một lúc nào đấy nhiệt độ và áp suất đủ để tạo phản ứng hạt nhân. Vào cuối giai đoạn tích tụ cũng là lúc đám tinh vân nóng nhất. Khi không còn năng lượng hấp dẫn để nóng lên nữa, đám tinh vân bắt đầu nguội dần nhưng ở trung tâm Mặt Trời mới hình thành nhiệt độ vẫn rất cao. Tại vùng bên trong của hệ Mặt Trời các vật thể cứng tiếp tục lớn lên nhưng chúng không tương tác với các chất khí còn sót lại của đám tinh vân. Ngược lại, các hành tinh phôi thai ở vùng bên ngoài của hệ Mặt Trời trở nên quá lớn và chúng tiếp tục hút các chất khí xung quanh. Khi Hydro và heli tập trung nhanh chóng vào nhân của chúng, các hành tinh khổng lồ này nóng lên bởi năng lượng co rút của chúng. Tuy nhiên các hành tinh này không đủ lớn để đạt được nhiệt độ và áp suất cần thiết để phản ứng hạt nhân xảy ra. Sau khi cháy đỏ rực trong vài ngàn năm, chúng dần dần nguội lại và có trạng thái như ngày nay. 8
  10. Thêm vào đó, khi đám tinh vân nguội lại, các chất khí phản ứng tương tác với nhau và sinh ra các hợp chất, các hợp chất này đọng lại thành các hạt ở thể lỏng và thể rắn. Kim loại và đá silicat cùng các khoáng chất khác là những vật chất đầu tiên tạo thành các hạt. Khi nhiệt độ tiếp tục giảm, các hạt này liên kết với các hợp chất giàu cacbon và nước mà ngày nay chúng ta thấy chúng hiện diện rất nhiều trong các tiểu hành tinh. Ở phần bên trong của các đám tinh vân nhiệt độ hạ không đủ thấp để các chất này có thể đọng lại vì thế chúng không hiện diện trong những hành tinh trong cùng nhất. Khi nhiệt độ hạ xuống khoảng -70oC, oxi liên kết với Hydro và đông lại thành băng đá. Sau một thời gian các hành tinh lớn được tạo ra, Mặt Trời phôi thai cũng giống như những vì sao sơ sinh khác đã trải qua một giai đoạn phát sinh ra gió Mặt Trời cực mạnh thổi bay đi các chất khí còn lại trong đám tinh vân. Đám tinh vân Mặt Trời dần dần tan biến và cuối cùng để lại một vì sao vừa mới hình thành cùng với 8 hành tinh và vô số những vật thể khác di chuyển chung quanh nó. Các giả thuyết về nguồn gốc của Mặt Trời và các hành tinh: 1. Giả thuyết Kant - Laplace Năm 1755 trong cuốn sách “Lịch sử khái quát về tự nhiên và học thuyết về Mặt Trời” nhà triết học Đức Kant đã dựa vào môn cơ học thiên văn để giải thích sự hình thành các thiên thể và chuyển động ban đầu của chúng. Từ 1796 - 1824 nhà toán học, thiên văn Pháp Laplace dựa vào ý kiến Kant xây dựng một giả thuyết mới gọi là giả thuyết Kant - Laplace • Theo Kant, Mặt Trời và các hành tinh được hình thành từ một đám mây bụi (khối khí) vũ trụ dày đặc, có thể là chất khí hay vật chất rắn nguội đặc. • Theo Laplace thì các hành tinh hình thành từ một khối khí loãng nóng xung quanh Mặt Trời. Vật chất gần Mặt Trời do sức hút, va chạm nhau (theo Kant) hoặc do nguồn lạnh đông đặc lại (theo Laplace) mà sinh ra sự vận động xoáy ốc và hình thành các vành đai vật chất đặc quay xung quanh Mặt Trời. Sau đó, phần lớn khối lượng của mỗi vành đai kết tụ lại thành khối cầu đó là hành tinh, còn lại trở thành vệ tinh. Giả thuyết này bộc lộ nhiều thiếu sót vì không giải thích nổi một số vấn đề: - Tại sao vệ tinh các sao Mộc và sao Thổ có chiều quay ngược lại chiều quay của đa số thiên thể trong hệ Mặt Trời. - Tại sao mặt phẳng xích đạo và mặt phẳng quỹ đạo của cả 5 vệ tinh của Thiên Vương Tinh đều vuông góc với mặt phẳng hoàng đạo. - Nếu theo sơ đồ của Laplace thì các vành đai vật chất phải tự quay theo hướng xuôi kim đồng hồ nhưng thực tế chúng lại quay ngược kim đồng hồ. - Trong khi tự quay, tại sao không khí ở vành vật chất lại ngưng tụ lại thành hành tinh, trong khi kết quả nghiên cứu phải phân tán vào vũ trụ. - Mặt Trời tự quay một vòng quanh trục phải mất từ 25 - 27 ngày. Tốc độ tự quay chậm đó làm sao đủ sức tách một phần vật chất ra thành các hành tinh. Ngay cả độ dẹt do sức ly tâm sinh ra cũng không quan sát thấy. 2. Giả thuyết Jeans (hay là giả thuyết “tai biến”) Theo Jeans thì việc tách một phần vật chất vũ trụ từ Mặt Trời để hình thành hành tinh là do tác động của một ngôi sao lạ nào đó, lớn tương tự Mặt Trời đã đi vào phạm vi hệ Mặt Trời một cách ngẫu nhiên và khoảng cách chúng chỉ còn bằng bán kính Mặt Trời. Ở điều kiện đó, hiện tượng triều lực sẽ làm cho vật chất ở Mặt Trời sẽ lồi ra ở hai phía đối diện thành bướu vật chất nóng đỏ. Bướu hướng về phía (Mặt Trời) của thiên thể lạ dày hơn nhiếu so với bướu đối 9
  11. diện. Nó tách ra khỏi Mặt Trời, đứt ra từng đoạn sinh ra hành tinh. Giả thuyết giải quyết được vấn đề momen quay của hành tinh không phụ thuộc vào động lượng Mặt Trời. Nhưng giả thuyết này mắc một số sai lầm khác: các nhà thiên văn đã tính được rằng khoảng cách giữa các thiên thể là rất lớn, nếu giả sử đường kính Mặt Trời bằng 1mm thì khoảng cách từ nó đến ngôi sao gần nhất phải bằng 20-25 km, vậy trong sự chuyển động hỗn độn đó làm sao một ngôi sao lạ lại có thể may mắn đi đến gần Mặt Trời với khoảng cách 1mm. 3. Giả thuyết Otto Smith Theo giả thuyết này thì thiên thể trong vũ trụ được hình thành từ một đám mây bụi và khí. Đám mây bụi và khí này ban đầu quay tương đối chậm. Trong quá trình chuyển động trong hệ Ngân hà, sự vận động lộn xộn ban đầu của các hạt bụi đã dẫn đến sự va chạm làm cho động năng chuyển thành nhiệt năng. Kết quả hạt bụi nóng lên, dính với nhau, khối lượng đám bụi giảm đi, tốc độ quay nhanh hơn và quỹ đạo hạt bụi là quỹ đạo trung hình của chúng. Sự chuyển động đi vào trật tự. Đám mây bụi có dạng dẹt hình đĩa với các vành xoắn ốc. Khối lượng lớn nhất ở trung tâm, nơi nhiệt độ tăng lên rất cao và các phản ứng hạt nhân bắt đầu xảy ra. Mặt Trời được hình thành. Những vành xoắn ốc ở phía ngoài cùng cũng dần kết tụ lại dưới tác dụng của trọng lực trở thành hành tinh. Sự kiện này được xảy ra cách đây 10 tỉ năm. - Trong quá trình hình thành các hành tinh, do tác dụng của bức xạ nhiệt và ánh sáng Mặt Trời, những vành vật chất ở gần trung tâm bị hun nóng nhiều nhất. Thành phần khí và một số chất rắn vành này bị bốc hơi và bị áp lực ánh sáng đẩy ra phía ngoài. Rút cuộc ở những vành này chỉ còn khối lượng nhỏ vật chất nhưng nặng và có độ bốc hơi kém là Fe và Ni. Điều này giải thích được tại sao các hành tinh thuộc nhóm Trái Đất có kích thước nhỏ nhưng tỉ trọng lớn. - Các vành đai vật chất ở xa Mặt Trời, ít chịu tác dụng bức xạ của Mặt Trời, các hành tinh được hình thành từ vật chất nguyên thuỷ chưa phân đi và vật chất bốc hơi từ vành bên trong ra, gồm chủ yếu là chất khí nhẹ như Hydro nên có khối lượng lớn, tỉ trọng nhỏ. Hình dạng đĩa của đám mây bụi ban đầu cũng giải thích tại sao quỹ đạo các hành tinh lại sắp xếp trên cùng một mặt phẳng. Các quỹ đạo đó ít nhiều đều có hình elip do tác động phức tạp của các thiên thể. - Sao Thuỷ có khối lượng và tốc độ tự quay nhỏ nhất vì nó ở gần Mặt Trời nhất: bức xạ mạnh của Mặt Trời làm giảm khối lượng và sự ma sát lớn của triều lực làm giảm tốc độ tự quay của nó. - Tính chất đặc biệt sao Hoả về mặt khối lượng cũng là do tác động của sao Mộc. Sao này cướp đi một phần vật chất của sao Hoả, một phần còn lại tạo nên vành đai tiểu hành tinh. - Bộ phận vật chất giữa các vành vật chất bên trong có khối lượng lớn làm xuất hiện hành tinh đôi - Trái Đất + Mặt Trăng. Vì momen quay lớn nên vật chất ở đây không thể tập trung vào một tâm mà phải có tâm thứ hai là Mặt Trăng. - Gần đây các nhà vật lý, thiên văn cho rằng: vấn đề phân bố momen động lượng là do từ trường của Mặt Trời nguyên thuỷ và các hành tinh phôi thai sinh ra. Từ trường này kìm hãm sự chuyển động của các thiên thể ở bên trong và thúc đẩy sự chuyển động thiên thể bên ngoài hình thành nên hành tinh. - Vào cuối thời kì ngưng tụ, Trái Đất đã có khối lượng lớn gần như hiện nay thì nội bộ diễn ra quá trình tăng nhiệt. Lúc đầu là nhiệt của quá trình di chuyển vật chất do Photpho sau đó là quá trình phóng xạ của vật chất. Sự tăng nhiệt dẫn đến sự nóng chảy của vật chất bên trong sắp xếp thành nhân, bao manti và vỏ như hiện nay. - Trái Đất lúc đầu nguội lạnh sau đó nóng dần lên. Trái Đất hình thành cách đây 4,5-4,6 tỉ năm, còn lớp vỏ thì cách nay 3 tỉ năm. 10
  12. 2.4. Một số nét về các thiên thể của hệ Mặt Trời 2.4.1. Mặt Trời - Sun Mặt Trời là ngôi sao ở trung tâm Hệ Mặt Trời, chiếm khoảng 99,86% khối lượng của Hệ Mặt Trời. Trái Đất và các thiên thể khác như các hành tinh, tiểu hành tinh, thiên thạch, sao chổi và bụi quay quanh Mặt Trời. Khoảng cách trung bình giữa Mặt Trời và Trái Đất xấp xỉ 149,6 triệu kilômét (1 Đơn vị thiên văn AU) nên ánh sáng Mặt Trời cần 8 phút 19 giây mới đến được Trái Đất. Trong một năm, khoảng cách này thay đổi từ 147,1 triệu kilômét (0,9833 AU) ở điểm cận nhật (khoảng ngày 3 tháng 1), tới xa nhất là 152,1 triệu kilômét (1,017 AU) ở điểm viễn nhật (khoảng ngày 4 tháng 7). Năng lượng Mặt Trời ở dạng ánh sáng hỗ trợ cho hầu hết sự sống trên Trái Đất thông qua quá trình quang hợp và điều khiển khí hậu cũng như thời tiết trên Trái Đất. Thành phần của Mặt Trời gồm hydro (khoảng 74% khối lượng, hay 92% thể tích), heli (khoảng 24% khối lượng, 7% thể tích) và một lượng nhỏ các nguyên tố khác gồm sắt, nickel, oxy, silic, lưu huỳnh, magiê, carbon, neon, canxi, và crom. Mặt Trời có hạng quang phổ G2V. G2 có nghĩa nó có nhiệt độ bề mặt xấp xỉ 5.778 K (5.505 °C) (độ K = độ C + 273,15) khiến nó có màu trắng, và thường có màu vàng khi nhìn từ bề mặt Trái Đất bởi sự tán xạ khí quyển. Chính sự tán xạ này của ánh sáng ở giới hạn cuối màu xanh của quang phổ khiến bầu trời có màu xanh. Quang phổ Mặt Trời có chứa các vạch ion hoá và kim loại trung tính cũng như các đường hydro rất yếu. V (số 5 La Mã) trong lớp quang phổ thể hiện rằng Mặt Trời, như hầu hết các ngôi sao khác, là một ngôi sao thuộc dãy chính. Điều này có nghĩa nó tạo ra năng lượng bằng tổng hợp hạt nhân của hạt nhân hydro thành heli. Có hơn 100 triệu ngôi sao lớp G2 trong Ngân Hà của chúng ta. Từng bị coi là một ngôi sao nhỏ và khá tầm thường nhưng thực tế theo hiểu biết hiện tại, Mặt Trời sáng hơn 85% các ngôi sao trong Ngân Hà với đa số là các sao lùn đỏ. Nguồn năng lượng do Mặt Trời có được là do phản ứng nhiệt hạch tổng hợp H thành He. Mỗi giây có khoảng 600-700 triệu tấn bị hydro tiêu huỷ và khoảng 4 triệu tấn được biến thành năng lượng theo phương trình E = mc2. Với tốc độ tiêu thụ nhiên liệu như hiện nay thì Mặt Trời còn có thể sáng thêm 5 tỷ năm nữa mặc dù nó đã sáng được 4 đến 5 tỷ năm rồi. Bề mặt của Mặt Trời là lớp khí mà từ đó ánh sáng của Mặt Trời tới chúng ta, lớp này gọi là quang quyển có chiều dày khoảng 300 km. Bán kính của Mặt Trời được xác định như là khoảng cách của quang quyển tính từ tâm Mặt Trời RMo = 7.105 km. 11
  13. Ánh sáng của Mặt Trời có cường độ rất mạnh, không thể nhìn bằng mắt thường trực tiếp hoặc qua các thấu kính, kính thiên văn, muốn quan sát được chúng ta phải hứng ảnh của Mặt Trời qua kính thiên văn vào một màn hứng hoặc một bề mặt trắng, hoặc cũng có thể lắp thêm kính lọc trước thị kính của kính thiên văn để quan sát. Vết đen Mặt Trời Galileo là người đầu tiên quan sát Mặt Trời và các vết đen của nó hầu như mỗi ngày. Ông đã thấy rằng những vết đen Mặt Trời rộng hơn và tồn tại lâu hơn hiện ra ở một phía của Mặt Trời, sau đó di chuyển ngang qua bề mặt Mặt Trời và biến mất ở phía khác sau khoảng 2 tuần. Galileo đã khẳng định rằng những vết đen Mặt Trời phải thực sự là một phần của Mặt Trời và quay cùng với chiều quay của Mặt Trời, khoảng 28 ngày. Đường kính của vết đen rộng nhất vào cỡ 104 km, nghĩa là lớn gấp vài lần đường kính Trái Đất. Các vết đen Mặt Trời hoàn toàn không phải đen, độ sáng bề mặt của chúng điển hình vào khoảng 1/4 độ sáng của môi trường xung quanh, khoảng 4.103 K, ngay cả đối với độ sáng đó nó vẫn dễ làm mù mắt người quan sát. Các vết đen trên Mặt Trời là những vùng khí xoáy có nhiệt độ thấp hơn vào khoảng o 4.500 C do từ trường gây ra. Những vết đen rộng nhất tồn tại trong khoảng 2 tháng, khoảng thời gian này là đủ dài để các vết đen biến mất ở một phía của đĩa Mặt Trời và tái xuất hiện ở phía khác hai tuần sau đó. Hầu hết các vết đen được quan sát thấy trong vài ngày và sau đó biến mất để được thay thế bởi những vết đen khác. Vì toàn bộ Mặt Trời là một quả cầu khí nên không thể có các vật chất từ rắn ở đó. Từ trường phải do dòng điện tạo ra như đã xảy ra đối với một nam châm trong phòng thí nghiệm. Vậy liệu dòng điện có thể chạy trong chất khí không? Hoàn toàn có thể vì có nhiều nguyên tử trong khí của Mặt Trời bị ion hoá nên có nhiều electron tự do. Khi các electron và các hạt mang điện của chúng chuyển động tương đối với các nguyên tử và các ion, có dòng điện chạy trong chất khí. Các vết đen Mặt Trời là một trong số nhiều ví dụ của các dòng điện và từ trường vũ trụ. Các tai lửa Thỉnh thoảng người ta thấy các tai lửa bắn ra từ Mặt Trời, ta thấy chúng như những vòng khí màu đỏ, điển hình khoảng 104 km phía trên bề mặt Mặt Trời. Chúng tồn tại bên trên Mặt Trời trong một số ngày. Màu đỏ (bước sóng 656,3mm) của tai lửa cho chúng ta biết rằng chúng ta đang quan sát Hydro nóng khoảng 104 K. Tại sao những khí nóng này lại bốc cao như vậy mà không rơi vào bề mặt Mặt Trời?. Một bằng chứng được rút ra từ hình dáng của nhiều tai lửa. Nhìn hình bên: tai lửa như hình ảnh của bột sắt xung quanh một nam châm rắn trong phòng thí nghiệm. Điều này cho thấy có từ trường tạo nên tai lửa. Nếu ở đó cũng có dòng điện thì tai lửa được nâng lên bởi các lực IxB. Những tai lửa này có nhiệt độ khoảng 7.000oC đến 10.000oC cao hơn nhiệt độ bề mặt của Mặt Trời, điều này không hề vô lý, nó chứng tỏ rằng các tai lửa có nguồn gốc từ bên trong Mặt Trời. 12
  14. Nhật thực và vành nhật hoa Trong suốt nhật thực toàn phần, khi Mặt Trăng bao phủ đĩa sáng của Mặt Trời, khi đó ta mới quan sát được vành nhật hoa (corona: tiếng La tinh có nghĩa là vương miện). Nhật thực toàn phần có thể kéo dài đến 7 phút. Nguyên nhân của ánh sáng nhìn thấy phát ra từ vành nhật hoa là: Hầu hết ánh sáng này là ánh sáng Mặt Trời được tán xạ về phía chúng ta bởi các electron tự do. Từ độ sáng của ánh sáng Mặt Trời bị tán xạ, chúng ta biết mật độ của electron và của các proton trong vành nhật hoa. Mật độ khí có thể đạt 10-6 mật độ trong quang quyển, mật độ còn giảm hơn ở phía ngoài, do vậy vành nhật hoa rất mờ, không quan sát được trong điều kiện bình thường, chúng ta chỉ thấy nó khi có hiện tượng nhật thực toàn phần như hình trên. Một phần khác của bức xạ từ vành nhật hoa là sự phát xạ ở những bước sóng xác định từ các nguyên tử bị ion hoá cao độ như các ion sắt mất đến 8 đến 12 electron. Khi một ion được tích điện nhiều như vậy cần rất nhiều năng lượng để dịch chuyển tiếp một electron, những electron còn lại trong các ion phải bị đánh bật ra bởi những vụ va chạm rất mạnh với các electron hoặc ion khác. Năng lượng va chạm cao đòi hỏi chuyển động nhiệt với tốc độ lớn, do đó nhiệt độ cao. Hiện nay, vật lý nguyên tử cho chúng ta biết rằng nhiệt độ vành nhật hoa phải vào 2.106 K. Gần như tất cả Hydro đều bị ion hoá ở nhiệt độ này. Vì những vụ va chạm giữa các nguyên tử và electron mạnh như vậy nên các photon được phát ra mang năng lượng rất lớn. Ở nhiệt độ của vành nhật hoa, hầu hết các photon là tia X. Vì thế hình ảnh của vành nhật hoa có thể thu được bằng cách sử dụng một camera tia X. Tia X không xuyên qua khí quyển Trái Đất nên camera tia X phải được đặt trong vũ trụ. Dưới đây là một vài thông số cơ bản về các hành tinh trong Hệ Mặt Trời: So sánh kích cỡ của 8 hành tinh trong hệ Mặt Trời 2.4.2. Sao Thuỷ - Mercury Hành tinh này được đặt tên tương ứng với từ Hermes trong tiếng Hy Lạp, tên gọi của vị thần truyền tin có đôi giầy có cánh có thể bay đi khắp mọi nơi nhanh hơn cả gió cuốn. Quả 13
  15. đúng như vậy, Sao Thuỷ là hành tinh gần Mặt Trời nhất và có chu kì năm (chu kì quay quanh Mặt Trời) nhỏ nhất trong số các hành tinh, khi quan sát từ Trái Đất, ta sẽ thấy rõ nó hoàn thành một vòng quay quanh Mặt Trười nhanh như thế nào. *Các số liệu: -Khoảng cách từ Mặt Trời : 0,39 AU (57,9 triệu km) -Chu kì quay quanh Mặt Trời: 87,96 ngày (ngày Trái Đất) -Chu kì tự quay : 58,7 ngày -Khối lượng : 3,3 x 1023 kg -Đường kính: 4.878km -Nhiệt độ bề mặt: đêm khoảng 100K (-173oC) còn ngày là khoảng 700K (+427oC) -Số vệ tinh: không 2.4.3. Sao Kim - Venus Mỗi năm sẽ có vài tháng ta thấy Sao Mai mọc lên buổi sớm ở chân trời Đông và vài tháng khác lại thấy Sao Hôm lúc Mặt rời lặn ở chân trời Tây. Chúng rất đẹp và rất sáng, cả hai, thật ra đều là một hành tinh duy nhất - Sao Kim. Nó là thiên thể sáng nhất bầu trời đêm của chúng ta (không tính Mặt Trăng), vẻ đẹp của nó làm người thời xưa đặt tên nó là Venus, theo tiếng Hy Lạp là Aphrodite - nữ thần tình yêu và sắc đẹp. *Các số liệu: -Khoảng cách từ Mặt Trời : 0,723 AU (108,2 triệu km) -Chu kì quay quanh Mặt Trời: 224,68 ngày -Chu kì tự quay: 243 ngày -Khối lượng : 4,87x1024 kg -Đường kính: 12.104 km -Nhiệt độ bề mặt: 726K (+453oC) -Số vệ tinh: không 2.4.4. Trái Đất - Earh *Các số liệu: -Khoảng cách từ Mặt Trời : 1 AU (149,6 triệu km) -Chu kì quay quanh Mặt Trời: 365,26 ngày -Chu kì tự quay: 24 giờ -Khối lượng : 5,98x1024 kg -Đường kính: 12.756km -Nhiệt độ bề mặt: 260 - 310K (từ -13oC đến +37oC) -Số vệ tinh: 1 - Mặt Trăng 2.4.5. Sao Hoả - Mars Hành tinh có màu đỏ như lửa, trong khi người phương Đông gọi nó là “Hoả” thì ở phương Tây, nó được gắn cho cái tên Mars - tên của thần chiến tranh Ares trong thần thoại Hy Lạp - vị thần hiếu chiến mà mỗi nơi thần đi qua thì luôn để lại một màu đỏ của lửa và máu. *Các số liệu: -Khoảng cách từ Mặt Trời : 1,524 AU (227,9 triệu km) -Chu kì quay quanh Mặt Trời: 686,98 ngày -Chu kì tự quay: 24,6 giờ -Khối lượng : 6,42x1023 kg -Đường kính: 6.787km -Nhiệt độ bề mặt: 150 - 310K (từ -123oC đến +37oC) 14
  16. -Số vệ tinh: 2 - Phobos và Deimos 2.4.6. Sao Mộc - Jupiter Là hành tinh lớn nhất hệ Mặt Trời, Sao Mộc hoàn toàn xứng đáng với cái tên Jupiter, mà theo tiếng Hy Lạp là Zeus - chúa tể của các vị thần. Sao Mộc cũng là hành tinh có nhiều vệ tinh nhất cũng như nhiều hiện tượng được quan tâm trong số 8 hành tinh của Hệ Mặt Trời. *Các số liệu: -Khoảng cách từ Mặt Trời : 5,203 AU (778,3 triệu km) -Chu kì quay quanh Mặt Trời: 11,86 năm -Chu kì tự quay: 9,84 giờ -Khối lượng : 1,9x1027 kg -Đường kính: 142.796km -Nhiệt độ bề mặt: 120K (nhiệt độ lớp khí bề mặt) (-153oC) -Số vệ tinh: 63 vệ tinh đã được đặt tên và nhiều vật thể nhỏ chuyển động xung quanh. 2.4.7. Sao Thổ - Saturn Nhiều người coi đây là hành tinh đẹp nhất trong số 7 hành tinh của Hệ Mặt Trời (không tính Trái Đất) do cái vành đai (Saturn’s ring) tuyệt đẹp của nó. Sao Thổ được đặt tên là Saturn, theo tiếng Hy Lạp là Cronus - cha của thần Zeus, người bị thần Zeus lật đổ khỏi vị trí cai quản các vị thần. *Các số liệu: -Khoảng cách từ Mặt Trời : 9,536 AU (1.427 triệu km) -Chu kì quay quanh Mặt Trời: 29,45 năm -Chu kì tự quay: 10,2 giờ -Khối lượng : 5,69x1026 kg -Đường kính: 120.660km -Nhiệt độ bề mặt: 88K (-185oC) -Số vệ tinh: 56 vệ tinh đã đặt tên và rất nhiều thiên thạch lớn nhỏ trong vành đai quay quanh. 2.4.8. Sao Thiên Vương - Uranus Hành tinh này được phát hiện ra vào ngày 13/3/1781 bởi nhà thiên văn William Herschel. Nó được đặt tên theo tên của Uranus - thần bầu trời, cha của Cronus, tức là ông nội của thần Zeus, người từng bị Cronus giết chết để cướp ngôi. *Các số liệu: -Khoảng cách từ Mặt Trời : 19,18 AU (2.871 triệu km) -Chu kì quay quanh Mặt Trời: 84,07 năm -Chu kì tự quay: 17,9 giờ -Khối lượng : 8,68x1025 kg -Đường kính: 51.118km -Nhiệt độ bề mặt: 59K (-214oC) -Số vệ tinh: 27 2.4.9. Sao Hải Vương - Neptune Được phát hiện ngày 23 tháng 9 năm 1846, hành tinh này được đặt tên là Neptune do nó có màu xanh như nước biển. Neptune theo tiếng Hy Lạp là Poseidon - anh trai của thần Zeus, vị thần cai quản tất cả các đại dương trên thế giới. *Các số liệu: -Khoảng cách từ Mặt Trời : 30,06 AU (4.497,1 triệu km) 15
  17. -Chu kì quay quanh Mặt Trời: 164,81 năm -Chu kì tự quay: 19,1 giờ -Khối lượng : 1,02x1026 kg -Đường kính: 48.600km -Nhiệt độ bề mặt: 48K (-225oC) -Số vệ tinh: 13 2.4.10. Các tiểu hành tinh Các tiểu hành tinh (asteroid) là một nhóm các thiên thể nhỏ trôi nổi trong hệ Mặt Trời trên quỹ đạo quanh Mặt Trời. Trong Hệ Mặt Trời, tiểu hành tinh đầu tiên và lớn nhất được phát hiện là Ceres, hiện tại nó được xếp loại là một hành tinh lùn, trong khi số còn lại hiện được xếp loại như những vật thể nhỏ của Hệ Mặt Trời. Số lượng to lớn các tiểu hành tinh được khám phá bên trong vành đai tiểu hành tinh chính, với các quỹ đạo elíp giữa quỹ đạo Sao Hoả và Sao Mộc. Mọi người cho rằng các tiểu hành tinh là tàn tích của một đĩa tiền hành tinh, và trong vùng này sự hợp nhất của các tàn tích tiền hành tinh thành các hành tinh không thể diễn ra vì những ảnh hưởng hấp dẫn to lớn từ Sao Mộc trong giai đoạn thành tạo của Hệ Mặt Trời. Một số tiểu hành tinh có các Mặt Trăng hay đi thành cặp trở thành các hệ đôi. Hàng trăm nghìn tiểu hành tinh đã được khám phá bên trong hệ Mặt Trời và tỷ lệ khám phá hiện nay là khoảng 5000 tiểu hành tinh/tháng. Tới ngày 17 tháng 9, 2006, trong tổng số 342.358 tiểu hành tinh được biết, 136.563 có quỹ đạo được xác định. Ước tính hiện nay tổng số tiểu hành tinh có đường kính hơn 1 km trong hệ Mặt Trời là khoảng từ 1.1 đến 1.9 triệu. Tiểu hành tinh lớn nhất phía bên trong hệ Mặt Trời là 1 Ceres, với đường kính 900-1000 km. Hai vật thể lớn khác ở vành đai tiểu hành tinh của hệ Mặt Trời là 2 Pallas và 4 Vesta; cả hai đều có đường kính ~500 km. Vesta là tiểu hành tinh duy nhất trong vành đai tiểu hành tinh chính. Khối lượng của toàn bộ các tiểu hành tinh trong Vành đai chính được ước tính khoảng 3.0-3.6×1021 kg, hay khoảng 4% khối lượng Mặt Trăng của chúng ta. Trong số đó, 1 Ceres chiếm 0.95×1021 kg, khoảng 32% tổng khối lượng. Ba tiểu hành tinh có khối lượng lớn tiếp theo là 4 Vesta (9%), 2 Pallas (7%), và 10 Hygiea (3%), tổng khối lượng của chúng chiếm tới 51%; trong khi ba tiểu hành tinh sau đó là 511 Davida (1.2%), 704 Interamnia (1.0%), và 3 Juno (0.9%), chỉ chiếm Vesta là hành tinh sơ sinh 3% tổng khối lượng. 2.4.11. Thiên thạch 16
  18. Thiên thạch là một vật thể tự nhiên từ ngoài không gian tác động đến bề mặt Trái Đất. Nó là mảnh vật chất (thường là các chất rắn) đi đến từ vùng không gian bên ngoài vào khí quyển, rơi xuống bề mặt Trái Đất hay bề mặt các thiên thể khác (như Mặt Trăng, Sao Hỏa ...). Một số hình ảnh về thiên thạch Thường thì khi thiên thạch di chuyển với vấn tốc nhanh và khi va vào bề mặt của một hành tinh hay tiểu hành tinh thì nó để lại trên bề mặt của hành tinh đó những mảnh vỡ hay những dấu vết về sự va chạm. Chúng ta có thể thấy rõ những ảnh chụp từ trong không gian của NASA về những vết rỗ trên Mặt Trăng vì ở đây không có gió hay trên Sao Hỏa. Trên thế giới đã tìm thấy rất nhiều những nơi mà dấu vế về vụ va chạm thiên thạch để lại. Tính đến giữa năm 2006, trên thế giới đã có khoảng 1050 mẫu thiên thạch từ những vụ va chạm và có khoảng 31000 tài liệu ghi chép về thiên thạch. Đa số thiên thạch khi lao vào khí quyển bị đốt cháy và nóng chảy, chỉ một số rất ít rơi trên mặt Trái Đất. Một dạng tương tự như thiên thạch là tectit được phát hiện ở nhiều nơi trên thế giới, tại một số vùng của Việt Nam tectit rơi trên mặt đất vào đầu Đệ Tứ, nhưng chúng đã bay vòng quanh Trái Đất như những vệ tinh từ kỷ Neogen (E. P. Izokh, 1988). Trong lịch sử địa chất nười ta biết được một số đợt tectit rơi ào ạt cách đây khoảng 34 triệu năm, 14,8 triệu năm và 0,6 triệu năm ... Có giả thuyết cho rằng tectit là vật liệu của một Sao Chổi, khi sao này quyệt vào Trái Đất thì những vật liệu của nó xuyên qua khí quyển và rơi trên mặt đất. Cũng có giả thuyết cho rằng tectit liên quan với một vụ đụng độ của Trái Đất với một hành tinh nào đó. 2.4.12. Sao Chổi Sao chổi là một thiên thể bay ngoài không gian, nó gần như một tiểu hành tinh, nhưng không được cấu tạo từ đất đá mà chủ yếu là từ băng. Sở dĩ chúng có tên là sao chổi vì thường có hình thù kỳ dị, đầu nhọn, đuôi to giống một chiếc chổi quét nhà. Các nhà khoa học đã mô tả nó giống như “một quả bóng tuyết bẩn” vì nó chứa carbonic, metan, nước đóng băng lẫn với bụi và các khoáng chất. Một học thuyết đặt ra đã bác bỏ thuyết gọi sao chổi là “sao” vì người ta cho rằng nó chỉ là một khối khí lạnh trong đó chứa đầy các mảnh vụn và bụi vũ trụ. Nó là “mẹ” của những vì sao băng rực sáng trên bầu trời, vì khi bị vỡ ra, nó sẽ tạo thành từng đám sao băng và bụi vũ trụ rơi vào khoảng không. Tùy thời điểm và vị trí bị vỡ của sao chổi, 17
  19. người ta có thể quan sát được những đám sao băng từ Trái Đất. Các nhà nghiên cứu thiên văn chia sao chổi thành 3 loại: ngắn hạn, dài hạn và sao chổi thoáng qua. Sao chổi ngắn hạn có chu kỳ quỹ đạo ít hơn 200 năm, sao chổi dài hạn có chu kỳ lớn hơn, còn sao chổi thoáng qua có quỹ đạo parabol hoặc hypecbol, chúng bay qua Mặt Trời một lần và sẽ ra đi mãi mãi sau đó. Mỗi năm có hàng trăm sao chổi được tạo ra ngoài vũ trụ nhưng chỉ có những sao chổi lớn và có chu kỳ đặc biệt được chú ý, như sao chổi Halley nổi tiếng chẳng hạn. Nó được phát hiện vào thế kỷ 18 và là sao chổi đầu tiên được phát hiện quay trở lại Trái Đất. Các nhà khoa học dự đoán nó sẽ quay trở lại Trái Đất trong thế kỷ 21, khoảng vào năm 2061. Sao chổi bắt nguồn từ đâu? Nghiên cứu của Cơ quan hàng không châu Âu cho rằng, sao chổi bắt nguồn từ đám mây Oort bên ngoài hệ Mặt Trời và là ranh giới giữa hệ Mặt Trời với các hệ hành tinh khác. Sao chổi chứa đựng các vật chất của thời kỳ khai sinh hệ Mặt Trời, do vậy chúng trở thành đối tượng nghiên cứu của các nhà khoa học để trả lời câu hỏi về quá trình tiến hóa của hệ Mặt Trời cũng như các hệ hành tinh khác trong vũ trụ. Đa phần các sao chổi có quỹ đạo elip rất dẹt, phân bố ngẫu nhiên ngoài không gian. Đuôi của sao chổi có được là do khi đi qua Mặt Trời (quỹ đạo hình elip của sao chổi có tâm là Mặt Trời), băng của sao chổi tan chảy tạo thành chiếc đuôi, nhưng cũng vì những chuyến ghé thăm rất gần Mặt Trời đó mà đuôi của sao chổi ngày càng ngắn đi do băng bị thất thoát. Mỹ đã phóng tàu vũ trụ Deep Impact vào sao chổi Temple 1 để nghiên cứu nhân của nó. Các nhà khoa học ở Cơ quan hàng không vũ trụ Mỹ (NASA) hy vọng sẽ có được những Tàu vũ trụ Deep Impact được phóng vào thông tin về hệ Mặt Trời của chúng ta với cấu sao chổi Temple 1 (Ảnh: universetoday) tạo hóa học đầu tiên của sự sống. Không một hành tinh nào trong hệ Mặt Trời so sánh được với sao chổi về mặt thể tích. Nó gồm 3 phần: lõi chổi, sợi chổi và đuôi chổi. Lõi chổi cấu tạo bằng những hạt thể rắn đậm đặc, ánh sáng tỏa xung quanh là các sợi chổi. Lõi kết hợp với sợi tạo thành đầu chổi, còn đuôi không phải có ngay từ lúc hình thành sao chổi mà có được khi nó đi ngang qua Mặt Trời. Những cơn gió Mặt Trời đã thổi bạt các phân tử của sao chổi và tạo thành chiếc đuôi rực sáng phía sau. Có chiếc đuôi của sao chổi kéo dài hàng triệu km. Ngay từ thế kỷ 18, Isaac Newton đã cho rằng sao chổi là vật thể đang giúp ích cho sự tồn tại của Trái Đất, nó cung cấp độ ẩm cho Trái Đất - điều kiện để duy trì sự sống của muôn loài. Đến nay, các nhà khoa học vẫn đang tìm hiểu về hiện tượng vũ trụ hấp dẫn và đầy bí ẩn còn chưa được khám phá. Khoa học hiện đại và sao chổi Hàng loạt các chuyến thám hiểm để tìm hiểu về thiên thể này đã được thực hiện. Các cơ quan nghiên cứu vũ trụ của Nga, Mỹ hay châu Âu đã vào cuộc, nhưng sao chổi vẫn là một bí 18
  20. mật với con người. Năm 2001, tàu Deep Space 1 của Mỹ đã bay qua hạt nhân của sao chổi Borrelly để tìm hiểu về cấu trúc của nó, hay tàu Stardust đã được phóng vào sao chổi Wild 2 để thu thập các hạt bụi để phục vụ nghiên cứu. Dự kiến năm 2014, tàu Rosseta sẽ đưa hẳn một trạm nghiên cứu lên bề mặt sao chổi Churyumov-Gerasimenko. Không phải lúc nào sao chổi cũng mang vẻ đẹp lung linh trên bầu trời mà còn tiềm ẩn những nguy cơ một khi nó bay gần quỹ đạo Trái Đất. Ở bất kỳ một hành tinh nào, sao chổi luôn bị lực hấp dẫn hút vào và những vụ va chạm giữa Trái Đất với các thiên thể ngoài vũ trụ là không thể tránh khỏi. Nó sẽ tạo nên các rung động mạnh trên bề mặt Trái Đất, thậm chí là tạo thành các trận động đất, lở tuyết hay các đợt sóng thần cao hàng trăm mét.... Theo các nhà khoa học, mỗi ngày, Trái Đất phải hứng chịu hàng chục các mảnh thiên thạch nhỏ hay bụi Sao chổi Churyumov-Gerasimenko từ vũ trụ, nhưng chỉ có những mảnh thiên thạch lớn như (Ảnh: astronomy) sao chổi mới nguy hiểm đối với Trái Đất của chúng ta. Tuy nhiên, các nhà khoa học luôn tính toán để Trái Đất tránh xa những vụ va chạm như vậy. Một tên lửa đẩy có mang đầu đạn hạt nhân sẽ phá vỡ hoặc làm chệch quỹ đạo bay của sao chổi. Ông K.Harpher, thuộc NASA cho biết, mặc dù được cấu tạo từ carbonic, metan, nước đóng băng, các hợp chất hữu cơ cao phân tử và các khoáng chất nhưng nguồn gốc của sao chổi lại nằm trong hạt nhân của nó. Hạt nhân sao chổi gồm những khoáng chất nặng hay chất hữu cơ cao phân tử, bao phủ là một bề mặt tối đen, có khả năng hấp thụ nhiệt rất mạnh, nhờ thế nó bốc hơi các khí và tạo thành đám bụi xung quanh, có khi lên đến cả trăm nghìn km, tạo thành một vệt kéo dài. Nhờ ánh sáng Mặt Trời mà khi ta nhìn từ Trái Đất sẽ thấy nó là một vết sáng giống hình cái chổi. Một điều gây ngạc nhiên nữa cho giới khoa học là thiên thể này còn phát ra tia X, đó là do sự tương tác giữa gió Mặt Trời và sao chổi. Mặc dù con người không ngừng tìm hiểu về sao chổi nhưng nó vẫn mang đầy bí ẩn và vẫn là một kỳ quan của tự nhiên, thu hút các nhà khoa học tìm hiểu, khám phá. Dưới đây là một số hình ảnh về sao chổi: 19
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2