Luận văn:Nghiên cứu và đánh giá các phương pháp giảm nhiễu trong tín hiệu tiếng nói
lượt xem 14
download
Download
Vui lòng tải xuống để xem tài liệu đầy đủ
Tham khảo luận văn - đề án 'luận văn:nghiên cứu và đánh giá các phương pháp giảm nhiễu trong tín hiệu tiếng nói', luận văn - báo cáo, thạc sĩ - tiến sĩ - cao học phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Luận văn:Nghiên cứu và đánh giá các phương pháp giảm nhiễu trong tín hiệu tiếng nói
- 1 2 B GIÁO D C VÀ ĐÀO T O Công trình ñư c hoàn thành t i Đ I H C ĐÀ N NG Đ I H C ĐÀ N NG Ngư i hư ng d n khoa h c: TS. PH M VĂN TU N PH M VĂN PHÁT Ph n bi n 1: TS. NGÔ VĂN S NGHIÊN C U VÀ ĐÁNH GIÁ CÁC PHƯƠNG PHÁP GI M NHI U TRONG TÍN HI U TI NG NÓI Ph n bi n 2: TS. NGUY N HOÀNG C M Lu n văn ñã ñư c b o v t i H i ñ ng ch m Lu n văn t t nghi p th c sĩ K thu t ñi n t h p t i Đ i h c Đà N ng vào Chuyên ngành: K THU T ĐI N T ngày 25 tháng 6 năm 2011 Mã s : 60.52.70 * Có th tìm hi u lu n văn t i: TÓM T T LU N VĂN TH C SĨ K THU T - Trung tâm Thông tin- H c li u, Đ i h c Đà N ng - Trung tâm h c li u, Đ i h c Đà N ng. Đà N ng - 2011
- 3 4 M Đ U - Tìm hi u các mô hình nhi u và ñ c ñi m c a các lo i nhi u trong tín hi u ti ng nói. D a trên mô hình nhi u c ng, phân tích cơ ch x p 1. Tính c p thi t c a ñ tài ch ng nhi u lên tín hi u trong mi n th i gian, mi n Fourier. H u h t ch t lư ng ti ng nói trong các h th ng thông tin liên l c - Nghiên c u và phát tri n các thu t toán ư c lư ng nhi u và các ñ u b suy gi m do nh hư ng b i nhi u. Nhi u có th xu t hi n k thu t hi u ch nh hàm nén nhi u trong x lý và nâng cao ch t ñ u vào c a h th ng, trên kênh truy n ho c t i các thi t b ñ u cu i. lư ng ti ng nói. Các thu t toán nén nhi u ñư c ñ c p g m: thu t Tùy theo ñ c ñi m c a t ng lo i nhi u và cư ng ñ nhi u khác nhau toán tr ph phi tuy n, thu t toán s d ng b l c Wiener và thu t mà s nh hư ng c a nó lên ch t lư ng ti ng nói cũng khác nhau. toán Log-MMSE (logarithm minimum mean squared error). Các k Lo i b nhi u ra kh i tín hi u ti ng nói là m t công vi c không ñơn thu t s d ng ư c lư ng và c p nh t nhi u g m: VAD (Voice gi n, vi c x lý lo i b nhi u không t t s gây m t thông tin, làm suy activity dectection) và ư c lư ng dùng b l c Percentile. gi m và méo d ng tín hi u ti ng nói. Vì v y, vi c nghiên c u và ñưa ra các phương pháp c i thi n ch t lư ng ti ng nói ñóng vai trò quan - Nghiên c u 6 phương pháp ñánh giá khách quan : CEP, LLR, IS, tr ng trong vi c ñ m b o ch t lư ng và tính trung th c c a tín hi u PESQ, WSS(Weighted Spectral Slope), SegSNR(Segment SNR ) ti ng nói trong các h th ng thông tin liên l c. - Th c hi n vi c x lý nén nhi u và ñánh giá khách quan ch t Vi c gi m nhi u nh m nâng cao ch t lư ng ti ng nói cũng là lư ng tín hi u ti ng nói sau x lý b ng ngôn ng l p trình Matlab. m t trong các gi i pháp k thu t quan tr ng nh m h tr cho các Xây d ng cơ s d li u tín hi u ti ng nói b tác ñ ng b i các lo i m ng x lý ti ng nói khác như nh n d ng ngư i nói, nh n d ng ti ng nhi u khác nhau v i các SNR khác nhau. Tri n khai ñánh giá ch t nói t ñ ng và tr thính trong các môi trư ng nhi u như xe hơi, ñám lư ng tín hi u b ng các phương pháp ñánh giá khách quan, ñ ng th i ñông, các xư ng công nghi p.v.v. qua ñó ñánh giá hi u qu c a các thu t toán gi m nhi u. D a trên các k t qu ñánh giá ti n hành phân tích l i các thu t toán nh m hi u 2. M c ñích nghiên c u ch nh và ñ xu t các gi i pháp hi u qu nh t. - Nghiên c u và phát tri n các thu t toán gi m nhi u trong mi n Fourier 4. Ý nghĩa khoa h c và th c ti n c a ñ tài - Nghiên c u các phương pháp ñánh giá khách quan ch t lư ng Th c hi n vi c gi m nhi u tín hi u ti ng nói trư c khi x lý là ti ng nói yêu c u không th thi u c a t t c các h th ng x lý ti ng nói nói 3. Đ i tư ng và ph m vi nghiên c u chung. Bên c nh ñó vi c ñánh giá khách quan ñư c ñ méo c a tín hi u, qua ñó ñ xu t ñư c các thu t toán x lý và gi m nhi u tín hi u - Nghiên c u các thu t toán và công c ñ x lý tín hi u ti ng nói nói chung
- 5 6 ti ng nói hi u qu nh t s có m t ý nghĩa khoa h c quan tr ng mà ñ CHƯƠNG 1: T NG QUAN V X LÝ TÍN HI U TI NG NÓI tài hư ng ñ n. 1.1. Gi i thi u chương 1.2. Tín hi u ti ng nói 5. C u trúc lu n văn 1.2.1. Tín hi u Chương 1: T ng quan v x lý tín hi u ti ng nói. Chương này cũng ñ c p các phương pháp cơ b n ñư c s d ng trong vi c phân 1.2.2. Tín hi u ti ng nói tích và t ng h p ti ng nói, k thu t mã hóa d ñoán tuy n tính, các X lý ti ng nói có th ñư c chia thành các m c sau: phương pháp gi m nhi u và tăng cư ng ch t lư ng tín hi u ti ng nói. Nh n d ng ti ng nói Chương 2: Các phương pháp gi m nhi u tín hi u ti ng nói. Nh n d ng ngư i nói Chương này t p trung nghiên c u các thu t toán gi m nhi u(Noise Tăng cư ng ch t lư ng ti ng nói Reductions) và c i thi n ch t lư ng ti ng nói(Speeech Enhancement). Các thu t toán nâng cao ch t lư ng ti ng nói ñư c s d ng nh m G m các thu t toán tr ph (Spectral–Subtraction), b l c Wiener lo i b t i ña các nh hư ng c a nhi u qua ñó cho phép c i thi n và Filtering(Wiener Filtering), Log-MMSE và v n ñ ư c lu ng, c p nâng cao ch t lư ng tín hi u. Các thu t toán nén nhi u có th chia nh t nhi u. thành 3 nhóm sau: Chương 3: Đánh giá khách quan ch t lư ng tín hi u ti ng nói. - Thu t toán tr ph N i dung c a chương trình bày các phương pháp ñánh giá khách - Thu t toán d a trên mô hình th ng kê quan: Segmental SNR(SegSNR), Itakura-Saito(IS), Weighted - Thu t toán không gian con Spectral Slope(WSS), Perceptual Evaluation of Speech Quality Mã hóa ti ng nói (PESQ), Log-Likelihood Ratio(LLR) ñ ñánh giá ch t lư ng tín hi u T ng h p ti ng nói sau x lý. Phân tích gi ng nói Đ nh v ngu n âm thanh Chương 4: Gi m nhi u và ñánh giá ch t lư ng tín hi u ti ng nói sau x lý. Xây d ng các bi u ñ và th c hi n các thu t toán gi m 1.2.3. Phân lo i ti ng nói nhi u mô ph ng b ng Matlab, sau ñó ñánh giá các k t qu thu ñư c Ti ng nói ñư c chia thành 3 lo i cơ b n như sau: b ng phương pháp ñánh giá khách quan. Âm h u thanh Âm vô thanh Âm b t
- 7 8 1.3. Các ñ c tính cơ b n c a tín hi u ti ng nói d ng ñ quan sát và phân tích tín hi u, xác ñ nh ñ nh tính các ñ c trưng cơ b n c a tín hi u. Quan sát nh ph ta thu nh n ñư c các 1.3.1. T n s l y m u thông tin như ph công su t, phân b t n s , formant.v.v. T n s l y m u là s l n l y m u ñư c tính trong m t ñơn v th i 1.4. Cơ s x lý tín hi u s gian, thông thư ng là giây. T n s l y m u ký hi u là Fs. 1.4.1. Các h th ng và các tín hi u th i gian r i r c 1.3.2. T n s cơ b n và ph t n 1.4.2. Phép bi n ñ i Fourier c a tín hi u r i r c DTFT Bi n ñ i Z (ZT): T n s cơ b n: Giá tr ngh ch ñ o c a T0 là F0 = 1/T0 ñư c g i là Bi n ñ i Fourier (Fourier Transform- FT): t n s cơ b n c a ti ng nói. F0 thay ñ i theo thanh ñi u và cũng nh 1.5. Phân tích ti ng nói hư ng ñ n ng ñi u c a câu nói. 1.5.1. Mô hình phân tích ti ng nói 1.3.3. Formant Mô hình t ng quát cho vi c phân tích ti ng nói ñư c trình bày Formant là d i t n s ñư c tăng cư ng do hi n tư ng c ng hư ng trong hình 1.13. trong ng d n thanh, ñ c trưng cho âm s c c a m i nguyên âm. 1.3.4. Bi u di n tín hi u ti ng nói Có 3 phương pháp bi u di n tín hi u ti ng nói cơ b n là: - Bi u di n dư i d ng sóng theo th i gian. - Bi u di n trong mi n t n s - Bi u di n trong không gian 3 chi u ( nh ph - spectrogram) 1.3.4.1. D ng sóng theo th i gian 1.3.4.2. Ph tín hi u ti ng nói D i t n s c a tín hi u âm thanh n m trong kho ng t n s t 0Hz ñ n 20KHz, tuy nhiên ph n l n công công su t n m trong d i t n s t 0,3KHz ñ n 3,4KHz. 1.3.4.3. nh ph (Spectrogram) Hình 1.13: Mô hình t ng quát c a vi c x lý ti ng nói Tín hi u ti ng nói còn ñư c bi u di n trong không gian ba chi u 1.5.2. Phân tích ti ng nói ng n h n g i là nh ph . nh ph có m t vai trò quan tr ng và là công c h a
- 9 10 1.5.3. Phân tích ti ng nói trong mi n th i gian CHƯƠNG 2: Năng lư ng trung bình CÁC PHƯƠNG PHÁP GI M NHI U TÍN HI U TI NG NÓI Đ l n biên ñ trung bình 2.1. Gi i thi u chương 2.2. Lý thuy t v nhi u 1.5.4. Phân tích ti ng nói trong mi n t n s 2.2.1. Ngu n nhi u 1.6. Phương pháp phân tích mã hóa d ñoán tuy n tính (LPC- 2.2.2. Phân lo i nhi u Linear Predictive Coding) 2.2.3. Nhi u và m c tín hi u ti ng nói trong các môi trư ng khác Phương pháp phân tích d ñoán tuy n tính là m t trong các nhau phương pháp phân tích tín hi u ti ng nói m nh nh t và ñư c s d ng 2.3. Các thu t toán tăng cư ng ch t lư ng ti ng nói ph bi n. Đi m quan tr ng c a phương pháp này n m kh năng nó Các thu t toán nén nhi u có th chia thành 3 nhóm sau: có th cung c p các ư c lư ng chính xác c a các tham s tín hi u − Thu t toán tr ph ti ng nói và kh năng th c hi n tính toán tương ñ i nhanh. − Thu t toán d a trên mô hình th ng kê − Thu t toán không gian con 1.7. Tăng cư ng ch t lư ng ti ng nói 2.4. Thu t toán Spectral Subtraction Các thu t toán nén nhi u có th chia thành 2 nhóm sau: 2.4.1. Gi i thi u chung Thu t toán tr ph Thu t toán không gian con Spectral – subtraction là thu t toán ñư c ñ xu t s m nh t trong các thu t toán ñư c s d ng ñ gi m nhi u trong tín hi u. Nó th a 1.8. K t lu n chương nh n s có m t c a nhi u, ph c a ti ng nói s ch ñư c ư c lư ng b ng cách tr ñi ph c a nhi u v i ph c a ti ng nói ñã b nhi u ∧ ∧ y(n) Y(ω) Subtraction X (ω) x (n) DFT IDFT processing Noise stimate Hình 2.3: Sơ ñ kh i minh h a k thu t tr ph
- 11 12 2.4.2. Thu t toán tr ph biên ñ Chương 3: ĐÁNH GIÁ CH T LƯ NG TI NG NÓI 2.4.3. Thu t toán tr ph công su t 3.1 Gi i thi u chương 2.4.4. Như c ñi m c a phương pháp tr ph 3.2 Đánh giá ch quan ch t lư ng âm thanh sau x lý 2.4.5. Tr ph phi tuy n 3.2.1 Phương pháp ñánh giá tương ñ i 2.5. Nâng cao ch t lư ng ti ng nói s d ng b l c Wiener 2.5.1. Gi i thi u chung Trong phương pháp này m i tín hi u c n ñánh giá, ngư i nghe nghe m t c p tín hi u và ch n m u tín hi u thích hơn. Phương pháp B l c Wiener do Norbert Wiener nghiên c u và ñ xu t năm này ph c t p và t n th i gian do s k t h p m t lư ng l n các cư ng 1949, ban ñ u b l c Wiener ñư c s d ng ñ x lý trong mi n th i ñ và m c nhi u. gian liên t c. Lý thuy t Wiener ñư c m r ng ñ x lý trong mi n 3.2.1.1 Phương pháp DCR th i gian r i r c, m t trong nh ng ng d ng ph bi n nh t c a b l c Wiener là x lý tín hi u s . 3.2.1.2 Phương pháp CCR 3.2.2 Phương pháp ñánh giá tuy t ñ i 2.5.2. Xây d ng b l c Wiener 2.5.3. Áp d ng b l c Wiener trong nâng cao ch t lư ng ti ng nói 3.3 Phương pháp ñánh giá khách quan 2.6. Nâng cao ch t lư ng ti ng nói b ng cách ư c lư ng MMSE Đánh giá ch t lư ng khách quan là phương pháp ñánh giá ch t 2.7. Nâng cao ch t lư ng ti ng nói b ng thu t toán ư c lư ng d a trên các phép ño thu c tính c a tín hi u lư ngLog-MMSE 3.3.1 Đo t s tín hi u trên nhi u trên t ng khung Ư c lư ng t i ưu biên ñ ph MMSE d a trên sai s bình Đo SNR trên t ng khung trong mi n th i gian là m t trong phương trung bình gi a biên ñ th t và biên ñ ư c lư ng, phương nh ng phương pháp ñánh giá v m t toán ñơn gi n nh t. Đ phương pháp này d th c hi n v m t toán h c, tuy nhiên nó không mang ý pháp này có hi u qu thì ñi u quan tr ng là tín hi u g c và tín hi u ñã nghĩa ch quan. Vì v y, ngư i ta ñưa ra phương pháp d a trên sai s qua x lý ph i trong cùng mi n th i gian và ñ l ch pha hi n t i ph i bình phương trung bình c a log ph biên ñ theo công th c sau: ñư c hi u ch nh chính xác. SNRseg ñư c xác ñ nh như sau { } Nm + N −1 E (log( X k ) − log( X k )) 2 ˆ (2.26) SNRseg = 10 M −1 ∑n= Nm x 2 (n) ∑ lg M m=0 ∑ Nm+ N −1 ( x(n) − x(n)) 2 ˆ (3.3) 2.8. Ư c lư ng và c p nh t nhi u n = Nm 2.8.1. Voice activity detection(VAD) Trong ñó x(n) : tín hi u g c (tín hi u s ch) 2.8.2. B l c percentile x(n) : tín hi u ñã ñư c tăng cư ng ˆ 2.9. K t lu n chương N: chi u dài khung (thư ng ñư c ch n t 15-20ms)
- 13 14 M: s khung c a tín hi u K max K loc max (3.11) W (k ) = . K max + C max − C x (k ) K loc max + C loc max − C x (k ) 3.3.2 Đo kho ng cách ph d a trên LPC Phép ño WSS tính cho m i khung c a tín hi u tho i: LPC (Linear Prediction Coefficient)s :H s d ñoán tuy n tính, (3.12) g m các phương pháp ph bi n là LLR (Log Likelihood Ratio) , IS 3.3.3 Perceptual Evaluation of Speech Quanlity (PESQ)Measure (Itakura Saito) và ño theo kho ng cách CEP (Cepstrum Distance) Năm 2000, ITU-T ch n Perceptual Evaluation of Speech Quality 3.3.2.1 Phương pháp ño LLR (PESQ) ñ thay cho Perceptual speech quality measure (PSQM). a xT R x a x d LLR (a x , a x ) = lg T ˆ ˆ (3.6) Trong t t c các objective measure thì PESQ là phương pháp a x Rx a x ph c t p nh t và ñư c khuy n ngh b i ITU-T ñ nh n bi t ch t a = [1,−a x (1),− a x ( 2),...,− a x ( p )] :h T x s LPC c a tín lư ng ti ng nói băng t n h p 3,2kHz. hi u s ch PESQ ñư c tính b i công th c: a xT = [1,−a x (1),− a x ( 2),..., − a x ( p )] :h s c a tín hi u ñã ˆ ˆ ˆ ˆ PESQ = a0 − a1d sym − a2 d asym ñư c tăng cư ng ch t lư ng V i a0 = 4.5 , a1 = 0.1 , a2 = 0.0309 Rx là (p+1)*(p+1)ma tr n t tương quan(Toeplitz) c a tín hi u s ch 3.4 K t lu n chương Đánh giá khách quan là phương pháp ñánh giá ch t lư ng d a 3.3.2.2 Phương pháp ño IS trên các phép ño thu c tính c a tín hi u bao g m ño t s tín hi u trên nhi u trên t ng khung SegSNR, ño kho ng cách ph s d ng h Đo IS ñư c xác ñ nh như sau[14] s d ñoán tuy n tính LPC (LLR ,IS), ño kho ng cách d a trên ñ G a ˆT R a ˆ Gˆ d IS (a x , a x ) = x x x x + lg x T G −1 (3.8) c ph (WSS), PESQ là m t trong nh ng phương pháp ñánh giá d G x a x Rx a x ˆ x khách quan ph c t p nhưng ñáng tín c y và có ñ tương quan khá Gx và Gx l n lư t là h s khu ch ñ i c a tín hi u s ch và tín ˆ cao so v i ñánh giá ch quan. hi u tăng cư ng. 3.3.2.3 Phương pháp ño Weighted Spectral Slope Phương pháp ñánh giá này ñư c tính b i d c ph ñ u tiên ñư c tìm th y c a m i d i ph . Xét Cx(k) là ph d i t i h n c a tín hi u s ch và C x (k ) là c a tín hi u tăng cư ng, xét trong ñơn v dB. ˆ
- 15 16 Chương 4 : TH C HI N GI M NHI U VÀ ĐÁNH GIÁ CH T 4.4 K t qu th c hi n gi m nhi u và nh n xét LƯ NG TÍN HI U SAU X LÝ 4.4.1 Gi m nhi u s d ng thu t toán tr ph 4.1 Gi i thi u chương Phương pháp tr ph cho k t qu nén nhi u khá t t nhưng cũng 4.2 Quy trình th c hi n chính kh vì v y m t ph n tín hi u h a ích cũng ñư c xem như nhi u 4.3 Th c hi n x lý gi m nhi u ti ng nói và b nén m nh, ñ c bi t là các thành ph n tính hi u có công su t ph nh như các âm gió, các âm n i. K t qu là tín hi u sau khi tăng 4.3.1 Xây d ng cơ s d li u cư ng b phá h y khá l n, tính d nghe c a tín hi u r t kém. Cơ s d li u ban ñ u là 30 câu tho i ñư c ghi âm trong phòng 4.4.2 Gi m nhi u s d ng b l c Wiener thí nghi m theo chu n c a IEEE là tín hi u tho i s ch. M i câu trung bình kho ng 2s. Các tín hi u tho i ñó sau ñó ñã ñư c c ng nhi u vào Phương pháp nén nhi u dùng b l c Wiener cho k t qu nén v i m c SNR 0dB, 5dB, 10dB, 15dB. Có năm lo i nhi u ñư c ch n nhi u khá t t, tuy nhiên các thành ph n có công su t ph nhi u l n ñ nghiên c u trong ñ tài là nhi u ô tô(car noise), nhi u ñám v n còn t n t i. So v i thu t toán tr ph , thu t toán WienerFilter cho ñông(babble), nhi u tr ng(white), nhi u t tàu h a(train) và nhi u k t qu t t hơn, các tín hi u h u ích có công su t ph th p v n ñư c giao thông ñư ng ph (street). Đ tài th c hi n hai phương pháp ư c gi l i, tín hi u sau x lý ít b phá h y hơn. lư ng nhi u là VAD và b l c Percentile. Ba thu t toán nén nhi u ñã 4.4.3 Gi m nhi u s d ng thu t toán LogMMSE ñư c nghiên c u và công b là thu t toán tr ph phi tuy n NSS(Non Linear Spectral Subtraction), b l c Wiener(WienerFiltering) và 4.5 Th c hi n ñánh giá khách quan ch t lư ng ti ng nói sau LogMMSE(Logrithm Minium Mean-Squared Error). Trên cơ s 30 khi x lý b ng các thu t toán gi m nhi u câu m u s ch t o ra 600 m u âm thanh ñư c c ng nhi u, các m u 4.5.1 Cơ s d li u s d ng cho quá trình ñánh giá này ñư c x lý qua 3 thu t toán nén nhi u khác nhau là NSS, WIENERFILTER và LogMMSE, k t qu là thu ñư c m t cơ s d Cơ s s d ng cho ñánh giá bao g m: li u m i là 3600 m u ti ng nói ñã ñư c x lý nén nhi u. - 30 câu tho i là tín hi u tho i s ch(clean) ñư c ghi âm trong 4.3.2 Xác ñ nh các tham s ñ u vào cho các thu t toán phòng thí nghi m theo chu n c a IEEE . 4.3.2.1 Hàm ñ l i(Gain Function) - 600 câu tho i ñư c c ng các ngu n nhi u khác nhau là CAR, 4.3.2.2 Thu t toán VAD BABLE, WHITE, TRAIN và STREET b n m c SNR khác nhau là 4.3.2.3 Thu t toán Percentile filtering 0dB, 5dB, 10dB và 15dB.
- 17 18 - 3600 câu tho i ñã ñư c x lý nén nhi u b ng 3 thu t toán nén nhi u khác nhau là NSS, WIENERFILTER và LogMMSE v i hai phương pháp ư c lư ng nhi u là VAD và Percentile Filter. 4.5.2 Quá trình th c hi n các thu t toán ñánh giá khách quan Các ñánh giá khách quan ñư c l a ch n ñ th c hi n ñánh giá ch t lư ng tín hi u ti ng nói g m: - Itakura-Saito (IS) - Log Likelihood Ratio (LLR) - Segmental Signal-to-Noise Ratio(SegSNR) Hình 4.10: Bi u ñ ñánh giá khách quan LLR c a 6 thu t toán tăng - Cepstrum Distance(CEP) cư ng ch t lư ng ti ng nói v i lo i nhi u tr ng(White) - Perceptual Evaluation of Speech Quanlity(PESQ) 4.3.2.1 K t qu ñánh giá khách quan các tham s CEP-PESQ-WSS - Weighted Spectral Slope (WSS) và SegSNR v i phương pháp ư c lư ng nhi u VAD LLR v i nhi u ti ng n ñám ñông(Bable) − T k t qu ñánh giá trên ta th y h u h t các m u âm tho i môi trư ng nhi u ti ng n ôtô cho ch s LLR th p trong d i bi n thiên h p t 0.3dB ñ n 0.8dB trong khi v i các lo i nhi u ñám ñông và nhi u tr ng thì ch s này bi n thiên r ng hơn t 0.2dB ñ n 1.5dB − Trong s 6 thu t toán s d ng ñ tăng cư ng ch t lư ng ti ng nói các ch s LLR ch ra r ng l c nhi u dùng thu t toán LogMMSE v i phương pháp ư c lư ng dùng b l c Percentile cho k t qu t t hơn h n các thu t toán khác. Bên c nh ñó v i hai phương pháp ư c lư ng thì ư c lư ng nhi u dùng VAD cho k t qu không kh quan b ng Hình 4.17: Bi u ñ ñánh giá khách quan các ch s CEP, PESQ, ư c lư ng Percentile. WSS, SNRseg c a 3 thu t toán tăng cư ng ch t lư ng ti ng nói s d ng ư c lư ng VAD v i lo i nhi u ñư ng ph
- 19 20 4.3.2.2 K t qu ñánh giá khách quan các tham s CEP-PESQ-WSS − V i các m c m c nhi u l n(SNR=0dB, 5dB) thì phương pháp và SegSNR v i phương pháp ư c lư ng nhi u dùng b l c Percentile tr ph t ra có ưu ñi m vư t tr i, kh năng nén khi u t t hơn phương pháp dùng b l c Wiener hay LogMMSE 4.3.2.3 Đánh giá hi u qu nén nhi u trên các môi trư ng nhi u khác nhau Trong s các ñánh giá khách quan, ñánh giá PESQ và SegSNR ñư c ITUT khuy n cáo do có ñ n ñ nh và tin c y cao. Hình 4.19: Bi u ñ ñánh giá khách quan các ch s CEP, PESQ, WSS, SNRseg c a 3 thu t toán tăng cư ng ch t lư ng ti ng nói s d ng ư c lư ng Percentile v i lo i nhi u ôtô T các k t qu ñánh giá trên ch ra r ng: − Các k t qu sau x lý nén nhi u nhìn chung cho ch s ñánh giá t t hơn so v i chưa x lý. − Các ñánh giá PESQ và SegSNR cho th y trong s các môi trư ng Hình 4.23: Bi u ñ ñánh giá khách quan PESQ trên 5 môi trư ng nhi u thì nhi u ñám ñông, nhi u tàu h a và nhi u ñư ng ph cho k t nhi u khác nhau s d ng thu t toán nén nhi u qu x lý th p nh t. Ngư c l i nhi u tr ng cho hi u qu x lý cao nh t.
- 21 22 Hình 4.23 bên trên ch ra k t qu ñánh giá PESQ s d ng thu t LogMMSE_Percentilefilter(trên) và LogMMSE _VAD(dư i) toán LogMMSE v i hai ư c lư ng tương ng là VAD và PercentileFilter. c hai k t qu cho th y thu t toán LogMMSE ñ u cho ñáp ng th p trong môi trư ng nhi u c a tàu h a và giao thông ñư ng ph . Ngư c l i v i lo i nhi u ôtô và nhi u tr ng thì k t qu ñ t ñư c cao hơn. Hình 4.24 bên dư i ch ra k t qu ñánh giá SegSNR trên năm môi trư ng nhi u khác nhau cùng v i ba thu t toán LogMMSE, NSS và Wiene PercentileFilter. K t qu cho th y ñánh giá SegSNR có tính tương ñ ng cao so v i ñánh giá PESQ. c ba k t qu trên hình 4.25 cho th y c ba thu t toán LogMMSE, NSS và Wiener ñ u cho ñáp ng r t t t trong hai môi trư ng nhi u ôtô và nhi u tr ng, ngư c l i cho k t qu th p nh t v i nhi u ñám ñông và giao thông ñư ng ph . 4.6 K t lu n chương Qua quan sát, phân tích và ñánh giá các k t qu ñ t ñư c cho m t s k t qu nh n xét sau: − Trong s năm môi trư ng t o nhi u ñ nghiên c u, các k t qu ñánh giá cho th y nhi u tr ng có ph nhi u h p, công su t nhi u n ñ nh nên hi u qu nén nhi u cao nh t, ngư c l i trong các môi trư ng khác như nhi u ñám ñông hay nhi u ti ng n giao thông do không có ñư c ñ n ñ nh cao, ph nhi u bi n thiên r ng nên hi u qu nén nhi u không cao. − Trong s các ñánh giá ñã nghiên c u, hai ñánh giá khách quan là Hình 4.24: Bi u ñ ñánh giá khách quan SegSNR trên 5 môi trư ng nhi u PESQ và SegSNR cho k t qu tương ñ ng trong t t c các môi khác nhau s d ng ư c lư ng PercentileFilter ng v i ba thu t toán nén trư ng nhi u và c các thu t toán nén nhi u. Đây là hai trong s năm nhi u LogMMSE(trên), NSS(gi a) và Wiener(dư i) ñánh giá cho kh năng tin c y và ñ n ñ nh cao nh t.
- 23 24 − V i cùng m t thu t toán ư c lư ng nhi u VAD, LogMMSE và K T LU N VÀ KI N NGH Wiener Scalart cho k t qu t t hơn NSS môi trư ng nhi u ñám ñông. Trong c hai phương pháp ư c lư ng nhi u dùng H u h t ch t lư ng ti ng nói trong các h th ng thông tin liên Percentilefilter và VAD, thu t toán NSS cho k t qu kém nh t sau ñó l c ñ u b suy gi m do nh hư ng b i nhi u. Nhi u có th xu t hi n là Wiener Scalart và LogMMSE. Thu t toán nén nhi u LogMMSE ñ u vào c a h th ng, trên kênh truy n ho c t i các thi t b ñ u cu i. cho k t qu kh quan nh t trong s các thu t toán ñã nghiên c u, k t Tùy theo ñ c ñi m c a t ng lo i nhi u và cư ng ñ nhi u khác nhau qu này cung hoàn toàn tương ñ ng v i phương pháp ñánh giá ch mà s nh hư ng c a nó lên ch t lư ng ti ng nói cũng khác nhau. quan b ng vi c nghe th các m u tín hi u ñã x lý. Trong t t c các Lo i b nhi u ra kh i tín hi u ti ng nói là m t công vi c ph c t p, môi trư ng gây nhi u thì môi trư ng nhi u tr ng cho k t qu nén vi c x lý lo i b nhi u không t t s gây m t thông tin, làm suy gi m nhi u t t nh t do ph nhi u r ng và có ñ n ñ nh cao thu n ti n cho và méo d ng tín hi u ti ng nói. Vì v y, vi c nghiên c u và ñưa ra các vi c c p nh t và x lý. phương pháp c i thi n ch t lư ng ti ng nói ñóng vai trò quan tr ng trong vi c ñ m b o ch t lư ng và tính trung th c c a tín hi u ti ng − V i cùng m t phương pháp nén nhi u, nhi u ñám ñông, ư c nói trong các h th ng thông tin liên l c. lư ng nhi u dùng Percentitlefilter cho k t qu t t hơn VAD h uh t các thu t toán khi SNR tăng d n. nhi u tr ng, ư c lư ng dùng Vi c gi m nhi u nh m nâng cao ch t lư ng ti ng nói cũng là VAD l i cho k t qu t t hơn. m t trong các gi i pháp k thu t quan tr ng nh m h tr cho các m ng x lý ti ng nói khác như nh n d ng ngư i nói, nh n d ng ti ng nói t ñ ng và tr thính trong các môi trư ng nhi u như xe hơi, ñám ñông, các xư ng công nghi p.v.v. Đ tài cũng xây d ng các gi i pháp gi m nhi u: các thu t toán ư c lư ng nhi u VAD, b l c Percentile và các hàm nén nhi u d a trên m c nhi u ñã ñư c ư c lư ng s d ng b l c Weiner, LogMMSE và thu t toán tr ph . Đ tài ñã xây d ng cơ s d li u tín hi u ti ng nói v i 600 m u âm tho i ñư c c ng nhi u v i 4 m c SNR khác nhau trên cơ s 3 lo i môi trư ng gây nhi u ph bi n nh t là Bable, Car, White, mtrain và Street. Đ tài cũng ñà ti n hành th c hi n các thu t toán gi m nhi u t o ñư c m t cơ s d li u l n v i 4230 m u âm tho i.
- 25 26 Tri n khai ñánh giá ch t lư ng tín hi u b ng các phương pháp - Nghiên c u các gi i pháp gi m nhi u trong mi n Wavelet và so ñánh giá khách quan v i 6 ñánh giá khác nhau là IS, CEP, LLR, sánh v i các thu t toán x lý trong mi n ph WSS, PESQ, và SNRseg, ñ ng th i qua ñó ñánh giá hi u qu c a các - Tri n khai các thu t toán trên các thi t b ph n c ng chuyên d ng thu t toán gi m nhi u. như KIT DSP, FPGA và ñánh giá l i hi u qu c a toàn b h th ng Tóm l i, qua quá trình th c hi n và các k t qu ñánh giá khách quan thu ñư c ch ra r ng: - Trong s các môi trư ng gây nhi u khác nhau, ngu n nhi u tr ng cho hi u qu nén nhi u t t nh t do có ph nhi u tương ñ i h p và công su t nhi u n ñ nh. Các ngu n nghi u có ñ bi n ñ ng l n, ph nhi u r ng như nhi u ñư ng ph , nhi u ñám ñông thì hi u qu nén nhi u th p hơn. - Trong s các thu t toán nén nhi u ñư c s d ng nghiên c u, thu t toán LogMMSE cho hi u qu nén nhi u cao nh t, ch t lư ng tín hi u sau x lý v n ñư c ñ m b o, các thông tin h u ích v n ñư c b o lưu. K t qu trên hoàn toàn tương ñ ng sau khi nghe th các m u tín hi u ñã x lý. - Trong 2 phương pháp ư c lư ng nhi u, ư c lư ng dùng b l c Percentile cho k t qu kh quan hơn s d ng ư c lư ng VAD, kh năng nén nhi u t t, tín hi u sau x lý ít b phá h y, v n ñ m b o tính d nghe. Phương pháp ư c lư ng VAD phù h p v i các m c nhi u l n có ñ bi n thiên ch m. Bên c nh các k t qu ñ t ñư c như nêu trên, tác gi ki n ngh ti p t c tìm hi u, nghiên c u các v n ñ như sau: - Th c hi n các ñánh giá ch quan cũng như tìm ñư c s tương ñ ng c a các ñánh giá khách quan so v i ñánh giá ch quan
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Tiểu luận Nghiên cứu marketing: Đánh giá mức độ hài lòng của khách hàng đối với sản phẩm dịch vụ tại Highlands Coffee
50 p |
3869
|
461
-
LUẬN VĂN:NGHIÊN CỨU CÁC THUẬT TOÁN NHẬN DẠNG CẢM XÚC KHUÔN MẶT TRÊN ẢNH 2D
42 p |
499
|
122
-
Luận văn:PHÂN TÍCH VÀ ĐÁNH GIÁ CHIẾN LƯỢC KINH DOANH HIỆN TẠI CỦA TỔNG CÔNG TY CỔ PHẦN BIA RƯỢU NƯỚC GIẢI KHÁT HÀ NỘI (HABECO)
47 p |
428
|
104
-
Luận văn Nghiên cứu xây dựng các qui trình đánh giá độ ổn định của một số thuốc dễ bị biến đổi chất lượng
118 p |
198
|
53
-
Luận văn: Khảo sát và đánh giá thực trạng cạnh tranh mặt hàng rau quả của tổng công ty rau quả nông sản Việt Nam
94 p |
152
|
36
-
Luận văn: Nghiên cứu xây dựng chương trình đánh giá chất lượng hệ thống cách điện của máy biến áp lực 110KV
13 p |
189
|
32
-
Luận văn:Nghiên cứu đánh giá tác động môi trường dự án đầu tư xây dựng hạ tầng khu công nghiệp Đông Quế Sơn - Tỉnh Quảng Nam
26 p |
149
|
30
-
LUẬN VĂN: Nhận xét và đánh giá chung về Công ty vật tư và xuất nhập khẩu hoá chất
49 p |
168
|
26
-
Luận văn Thạc sĩ Tâm lý học: Nghiên cứu tự đánh giá của sinh viên Trường Đại học Kinh tế Thành phố Hồ Chí Minh về phẩm chất nghề nghiệp
68 p |
111
|
19
-
Luận văn Thạc sĩ Khoa học môi trường: Nghiên cứu và đánh giá khả năng thích ứng với biến đổi khí hậu dựa vào hệ sinh thái ở Việt Nam: Nghiên cứu trường hợp ở tỉnh Bến Tre
102 p |
60
|
12
-
Luận văn Thạc sĩ Công tác xã hội: Đánh giá hệ thống dịch vụ tham vấn tại Trung tâm Tham vấn, Nghiên cứu và Phát triển Cộng đồng (CoRE)
132 p |
48
|
9
-
Luận văn Thạc sĩ Khoa học: Đánh giá hiện trạng môi trường phóng xạ khu vực huyện Tam Đường, Phong Thổ, thành phố Lai Châu và định hướng các giải pháp phòng ngừa, giảm thiểu
121 p |
31
|
6
-
Luận văn Thạc sĩ Khoa học: Nghiên cứu và đánh giá biến động ranh giới mặn các tầng chứa nước phục vụ quy hoạch, quản lý tài nguyên nước dưới đất tỉnh Cà Mau
76 p |
32
|
5
-
Luận văn Thạc sĩ Khoa học: Đánh giá ảnh hưởng một số chỉ tiêu của nước thải sinh hoạt đến chất lượng nước sông Khan thành phố Luang Prabang Lào
30 p |
60
|
4
-
Tóm tắt Luận văn Thạc sĩ Công nghệ thông tin: Nghiên cứu và đánh giá các phương pháp tổng hợp dữ liệu cho bài toán phân loại lớp phủ đô thị tại Việt Nam
30 p |
55
|
4
-
Luận văn: Nghiên cứu tách thu hồi thuốc nhuộm dư trong nước thải nhuộm bằng màng lọc và khả năng giảm thiểu fouling cho quá trình lọc tách thuốc nhuộm qua màng - Cù Thị Vân Anh
17 p |
100
|
4
-
Tóm tắt Luận văn Thạc sĩ Công nghệ thông tin: Nghiên cứu và đánh giá các phương pháp nội suy ảnh viễn thám cho bài toán phân loại lớp phủ đô thị tại Việt Nam
24 p |
60
|
3
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn
