
Phương trình vi phân của hệ thống tự động
lượt xem 8
download

Để chuyển phương trình vi phân của các khâu thành phương trình vi phân hệ thống thì ta phải loại tất cả các biến số trừ thông số mà ta quan tâm, thường ta giữ lại hằng số của hệ thống và thông số điều chỉnh
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Phương trình vi phân của hệ thống tự động
- TÆÛ ÂÄÜNG HOÏA QUAÏ TRÇNH NHIÃÛT - PHÁÖN I CHÆÅNG 5: PHÆÅNG TRÇNH VI PHÁN CUÍA HÃÛ THÄÚNG TÆÛ ÂÄÜNG Muäún tçm phæång trçnh vi phán cuía hãû thäúng thç ta cáön phaíi xaïc âënh phæång trçnh cuía caïc kháu taûo nãn hãû thäúng âoï. - Âãø chuyãøn phæång trçnh vi phán cuía caïc kháu thaình phæång trçnh vi phán hãû thäúng thç ta phaíi loaûi táút caí caïc biãún säú træì thäng säú maì ta quan tám, thæåìng ta giæî laûi hàòng säú cuía hãû thäúng vaì thäng säú âiãöu chènh - Trong thæûc tãú ta coï thãø sæí duûng 1 trong 3 phæång phaïp sau: - 5.1 Phæång phaïp thãú: Vê duû: Sæí duûng hãû thäúng tæû âäüng bãø næåïc coï tæû cán bàòng âáöu vaìo vaì âáöu ra ( træåïc ) l m λ ϕ 1 Qv, Pv µ ∆H ∆X ξ 3 2 Ho m l Qr, Pr 1- Âäúi tæåüng âiãöu chènh ( bãø næåïc ) 2- Pháön tæí âo læåìng (phao ) 3- Hãû thäúng tay âoìn Nhæ ta âaî biãút phæång trçnh vi phán cuía caïc kháu trãn laì: * Phæång trçnh vi phán cuía âäúi tæåüng : To. ϕ’ + A . ϕ = µ - λ (1) * Phæång trçnh cuía pháön tæí âo læåìng TP2. ξ’’ + TC . ξ’ +δÂL ξ = ϕ (2) * Phæång trçnh cuía tay âoìn liãn hãû : µ=ξ (3) Viãút caïc phæång trçnh trãn dæåïi daûng thuáût toaïn ⎧ T o . P .ϕ + A ϕ = µ − λ ⎪ 2 2 ⎪ ⎨ T P . P .ζ + T c . P .ζ + δ DL .ζ = ϕ (1’) & (2’) & (3’) ⎪ ⎪µ = ζ ⎩ Thay 3’ vaìo 2’ ta coï ⇒ T P . P . µ + T C . P . µ + δ DL . µ = ϕ 2 2 (4) Ruït µ tæì 4 thay vaìo 1’ ta âæåüc : 53
- TÆÛ ÂÄÜNG HOÏA QUAÏ TRÇNH NHIÃÛT - PHÁÖN I ϕ ( T o . . P + A )ϕ − = −λ T P . P + T C . P + δ DL 2 2 ⇒ ϕ ⎜ [ ⎛ ( T o + A )( T p2 . P 2 + T C . P + δ DL ) − 1 ⎞ ] ⎟ = −λ ⎜ T p2 P 2 + T C . P + δ DL ⎟ ⎝ ⎠ [T .T o P 2 .P 3 + (To .TC + AT P2 ). P 2 + (To .δ DL + ATC ) P + A δ DL − 1 ϕ ] [ = − λ TP2 .P 2 + TC P + δ DL ] (5) (5) laì phæång trçnh vi phán cuía hãû thäúng tæû âäüng viãút våïi biãún säú ϕ dæåïi daûng thuáût toaïn, noï mä taí tæång quan giæîa ϕ & λ hay coìn goüi phæång trçnh chuyãøn âäüng coï nhiãùu cuía hãû thäúng - Khi ta ruït nhiãùu âi λ = 0 thç ta coï phæång trçnh chuyãøn âäüng tæû do cuía hãû thäúng vaì coï daûng : [T .T o P 2 .P 3 + (ToTC + ATP2 ) P 2 + (To .δ DL + ATC ) P + Aδ DL − 1 ϕ = 0 ] (6) Phæång trçnh hãû säú træåïc ϕ goüi laì phæång trçnh âàûc tênh cuía hãû thäúng [T .T o P 2 .P 3 + (ToTC + ATP2 ) P 2 + (To .δ DL + ATC ) P + Aδ DL − 1 = 0 ] (7) Giaíi hãû phæång trçnh 1’ , 2’ , 3’ våïi biãn säú µ, láúy (4) thay vaìo (1’) ( biãún µ ) Ta coï : To . P {.....} + A {......} = µ − λ trong { .. .. } laì biãøu thæïc cuía ϕ tæì (4) nhán vaìo vaì âàût thæìa säú chung ta coï [ ⇒ To .TP2 .P3 + (ToTC + ATP2 ) 2 P 2 + (To .δ DL + ATC ) P + Aδ DL − 1 µ = −λ (5’) ] So saïnh (5) vaì (5’) ta tháúy daûng phæång trçnh âàûc tênh cuía hãû thäúng khäng âäøi nghéa laì daûng cuía noï khäng phuû thuäüc vaìo daûng cuía biãún säú maì tæì âoï phæång trçnh âàûc tênh thu nháûn âæåüc. Hãû thäúng åí âáy goüi laì hãû thäúng báûc 3 ( báûc cuía phæång trçnh âàûc tênh ) Trong træåìng håüp chung nháút phæång trçnh mä taí hãû thäúng tæû âäüng báûc n laì ( a n . P n + a n −1 P n −1 + ...+ a 1 P + a o )ϕ = ( bm P m + ... bo ) λ (8) hoàûc A ( P )ϕ = B ( P ) λ (8’) Nãúu hãû thäúng caìng phæïc taûp thç n caìng låïn. Phæång phaïp naìy chè giaíi cho træåìng håüp êt phæång trçnh ! 5.2. Phæång phaïp âënh thæïc: Âãø thæûc hiãûn phæång phaïp naìy ta qui æåïc mäüt säú caïch viãút: Qui æåïc : - Táút caí caïc biãún säú phuû thuäüc cuía hãû thäúng viãút åí vãú traïi cuía phæång trçnh coìn caïc biãún säú âäüc láûp viãút åí vãú phaíi - Caïc phæång trçnh cuía caïc kháu âæåüc sàõp xãúp tæì trãn xuäúng dæåïi sao cho nhæîng biãún säú giäúng nhau nàòm trong mäüt cäüt biãún säú naìo khäng coï trong phæång trçnh cuía kháu âang xeït âæåüc viãút våïi hãû säú khäng 54
- TÆÛ ÂÄÜNG HOÏA QUAÏ TRÇNH NHIÃÛT - PHÁÖN I Giaí sæí : hãû thäúng tæû âäüng âæåüc mä taí = 1 loaût phæång trçnh sau ⎧ C11 ( P )ϕ 1 + C12 ( P )ϕ 2 + ......+ C1n ( P )ϕ n = A1 ⎪ ⎪ C 21 ( P )ϕ 1 + C 22 ( P )ϕ 2 + ......+ C 2 n ( P )ϕ n = A2 ⎨ ⎪....................................... ⎪ C ( P )ϕ + C ( P )ϕ + ......+ C ( P )ϕ = A ⎩ n1 1 n2 2 nn n n ϕ 1 , ϕ 2 ..... ϕ n - Caïc biãún säú phuû thuäüc cuía hãû thäúng A1 , A2 ..... An - Caïc biãún säú âäüc láûp cuía hãû thäúng C11 .. . .. .. .Cn - Caïc hãû säú trong phæång trçnh âäüng cuía caïc kháu Tæì lyï thuyãút cuía phæång trçnh tuyãún tinh thç ta coï thãø xaïc âënh báút kyì giaï trë ϕ naìo tæì phæång trçnh trãn bàòng caïch : C 12 ( P )...... A1 ....... C 1 n ( P ) C 22 ( P )...... A2 ...... C 2 n ( P ) .......... .......... .......... ....... C ( P )...... An ...... C nn ( P ) ∆ ϕ1 = n2 = i C 11 ( P ) C 12 ( P )..... C 1 n ( P ) ∆ C 21 ( P ) C 22 ( P )..... C 2 n ( P ) .......... .......... .......... ....... C n ( P ) C 12 ( P ).... C nn ( P ) ∆ - Laì âënh thæïc chênh tæì caïc hãû säú ∆i - Laì âënh thæïc hçnh thaình tæ ìâënh thæïc ∆ bàòng caïch thay cäüt thæï i = cäüt hãû säú tæû do ∆i ϕi = ∆ Aïp duûng cho vê duû trãn Viãút laûi 3 phæång trçnh theo nguyãn tàõc vaì chuyãøn âãún daûng thuáût toaïn (1’) ( To P + A )ϕ − µ + oζ = − λ (2’) − 1. ϕ − 0 µ + ( TP2 + TC . P + δ DL )ζ = 0 (3’) 0ϕ + 1. µ − ζ = 0 (To P + A) − 1 0 ∆= −1 0 (T + TC P + δ DL ) ; P 2 0 1 −1 −λ −1 0 ∆ϕ = 0 0 (T + TC P + δ DL ) P 2 0 1 −1 55
- TÆÛ ÂÄÜNG HOÏA QUAÏ TRÇNH NHIÃÛT - PHÁÖN I (To P + A) − λ 0 (To P + A) − 1 − λ ∆µ = −1 0 (T + TC P + δ DL ) ; P 2 ∆ ξϕ = −1 0 0 0 0 −1 0 1 0 Khai triãøn caïc âënh thæïc naìy ∆ϕ ∆µ ∆ζ ⇒ ϕ = ; µ = ; ζ = ∆ ∆ ∆ [ ∆ = − To . TP . P + ( To TC + ATP ) P + ( To .δ DL + ATC ) P + Aδ DL − 1 2 3 2 2 2 ] ∆ϕ = λ ( TP2 . P 2 + TC . P + δ DL ) ⇒ Ta cuîng âæåüc phæång trçnh (5) tæïc laì : [T .T o P 2 .P 3 + (To .TC + AT P2 ). P 2 + (To .δ DL + ATC ) P + A δ DL − 1 ϕ ] [ = − λ TP2 .P 2 + TC P + δ DL ] 5.3: Phæång phaïp duìng haìm säú truyãön cuía caïc kháu vaì cuía hãû thäúng: λ µ ϕ W(p)BÂC W(p)ÂT Tçm haìm säú truyãön cuía caïc pháön tæí - Cuía âäúi tæåüng : ϕ W ( P ) dt = µ−λ - Caïc bäü âiãöu chènh µ ϕ W ( P ) BDC = vaì W ( P ) HT = ϕ λ Nãúu hãû trãn laì håí ( âæït ) ⇒ W (P)HTHåí = W(P)ât . W(P) BÂC Tæì trãn ⇒ µ = W ( P ) BDC .ϕ ϕ ⇒ W ( P ) dt = ⇒ W ( P ) dt .W ( P ) BDC .ϕ + W ( P ) dt .λ = ϕ W ( P ) BDC .ϕ + λ ⇒ (1 − W ( P ) dt .W ( P ) BDC )ϕ = λ .W ( P ) dt 56
- TÆÛ ÂÄÜNG HOÏA QUAÏ TRÇNH NHIÃÛT - PHÁÖN I ⇒ (1 − W ( P ) HTH )ϕ = λ .W ( P ) dt (10) ϕ W ( P ) dt ⇒ = λ 1 − W ( P ) HTH W ( P ) dt Váûy W(P)HTK = (11) 1 − W ( P ) HTH Thæûc cháút (10) cuîng laì phæång trçnh vi phán viãút dæåïi daûng thuáût toaïn ⇒ pháön træåïc ϕ cuîng laì pháön âàûc tênh cuía hãû thäúng ⇒ Phæång trçnh âàûc tênh cuía hãû thäúng 1 - W(P) HTH = 0 Váûy tæì tênh cháút cuía hãû håí ta coï thãø suy ra âàûc tênh cuía hãû kên ( quan troüng ) Thæåìng trong thæûc tãú µ vaì λ traïi dáúu nhau do âoï phæång trçnh âàûc tênh cuía hãû thäúng laì: 1 + W(P) HTH = 0 Vê duû: Âäúi våïi âäúi tæåüng bãø næåïc: 1 W ( P ) dt = T0 P + A 1 W ( P) BDC = 2 2 TP P + TC P + δ dl 1 => W ( P) HH = ( )( TP P + A TP P + TC P + δ dl 2 2 ) 1 Váûy phæång trçnh âàûc tênh hãû thäúng laì 1 − =0 ( )( TP P + A TP P + TC P + δ dl 2 2 ) 57

CÓ THỂ BẠN MUỐN DOWNLOAD
-
Chương 10: Các phương pháp tính quá trình quá độ trong mạch điện tuyến tính
57 p |
1813 |
197
-
Matlab nâng cao
541 p |
223 |
77
-
Bài giảng Kỹ thuật nhiệt: Chương 4 - Lê Anh Sơn
41 p |
294 |
69
-
Chương 6 NGHIỆM GẦN ĐÚNG CỦA HỆ PHƯƠNG TRÌNH VI PHÂN THƯỜNG
11 p |
505 |
46
-
Giải tích mạng - Chương 2
17 p |
168 |
32
-
Bài giảng Động lực học công trình - Chương 2: Dao động của hệ có bậc tự do hữu hạn
61 p |
184 |
31
-
Chương 3 - Phân tích hệ thống trong miền thời gian
21 p |
169 |
30
-
Bài giảng Động lực học công trình - Chương 3: Dao động của hệ có vô số bậc tự do
33 p |
111 |
17
-
Bài giảng Động lực học kết cấu: Chương 3 - Bạch Vũ Hoàng Lan
58 p |
46 |
9
-
Bài giảng Chương 6: Phân tích hệ thống liên tục theo thời gian dùng biến đổi Laplace
96 p |
85 |
6
-
Bài giảng Cơ lý thuyết 2 - Đại học Hàng Hải
59 p |
54 |
6
-
Bài giảng Tín hiệu và Thông tin: Chương 2 - TS. Jingxian Wu
38 p |
35 |
4
-
Bài giảng Kỹ thuật thuỷ khí: Chương 1+2 - TS. Ngô Văn Hệ
47 p |
8 |
3
-
Giáo trình Giải tích mạng: Phần 1 - Trường ĐH Công nghiệp Quảng Ninh
49 p |
16 |
3
-
Bài giảng Tín hiệu và hệ thống: Lecture 4 – Trần Quang Việt
14 p |
40 |
3
-
Bài giảng Tín hiệu và hệ thống: Chương 5 - Trần Quang Việt
29 p |
2 |
1
-
Bài giảng Tín hiệu và hệ thống: Chương 2 - ThS. Đinh Thị Thái Mai
41 p |
1 |
1
-
Mô hình hóa và phân tích động lực học máy lu rung xét đến sự dịch chuyển của lớp đất bổ sung trong quá trình đầm
6 p |
1 |
1


Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn
