intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

RBF stencils for poisson equation

Chia sẻ: Hoang Son | Ngày: | Loại File: PDF | Số trang:4

22
lượt xem
1
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

In the paper we present a method for finding the weight vector called stencil with the help of RBF interpolation. This stencil is the foundation for constructing meshless finite difference scheme for boundary value problems. The results of numerical experiments show that the numerical solution obtained by RBF-FD with the stencils generated by Gauss RBF interpolation is much more accurate then the solution obtained by FEM.

Chủ đề:
Lưu

Nội dung Text: RBF stencils for poisson equation

Đặng Thị Oanh<br /> <br /> Tạp chí KHOA HỌC & CÔNG NGHỆ<br /> <br /> 78(02): 63 - 66<br /> <br /> RBF STENCILS FOR POISSON EQUATION<br /> Dang Thi Oanh*<br /> Faculty of Information Technology - TNU<br /> <br /> ABSTRACT<br /> In the paper we present a method for finding the weight vector called stencil with the help of RBF<br /> interpolation. This stencil is the foundation for constructing meshless finite difference scheme for<br /> boundary value problems. The results of numerical experiments show that the numerical solution<br /> obtained by RBF-FD with the stencils generated by Gauss RBF interpolation is much more<br /> accurate then the solution obtained by FEM.<br /> Keyword: Radial Basis Function (RBF), meshless method, shape parameter, stencil<br /> <br /> INTRODUCTION*<br /> Because of the difficulties to create, maintain<br /> and update complex meshes needed for the<br /> standard finite difference, finite element or<br /> finite volume discretisations of the partial<br /> differential equations, meshless methods<br /> attract growing attention. In particular, strong<br /> form methods such as collocation or<br /> generalised finite differences are attractive<br /> because they avoid costly numerical<br /> integration of the non-polynomial shape<br /> functions on non-standard domains often<br /> encountered in those meshless methods that<br /> are based on the weak formulation of PDE.<br /> Thanks to their excellent local approximation<br /> power, radial basis functions are an ideal tool<br /> to produce numerical differentiation stencils<br /> for the Laplacian and other partial differential<br /> operators on irregular centres, without any<br /> need for a mesh. This leads to exceptionally<br /> promising RBF based generalised finite<br /> difference method.<br /> The essense of the method is to find a weight<br /> vector called stencil corresponding a row of<br /> stiffness matrix in FEM. In this paper we give<br /> formulas for finding the stencil based on<br /> RBF, and then we use them for discretising<br /> the Poisson equation on a nonuniform set of<br /> centres. In [1], [2] for the above purpose we<br /> used RBF interpolation with additional<br /> polynomial term and performed many<br /> numerical examples in complicated geometry<br /> domains with several RBF. In this paper we<br /> *<br /> <br /> Email: dtoanhtn@gmail.com<br /> <br /> concentrate on RBF interpolation without<br /> additional polynomial term and test the<br /> Poisson equation on the disk domain with<br /> RBF-Gaussian. The results of numerical<br /> experiments show that the numerical solution<br /> obtained by RBF-FD with the stencil<br /> generated by Gauss RBF interpolation is<br /> much more accurate then the solution<br /> obtained by FEM.<br /> The paper is organised as follows. In Section<br /> 2 we describe stencils from RBF<br /> interpolation. Section 3 is devoted RBF-FD<br /> discretisation of Poisson equation and finally<br /> Section 4 we provide the results of the<br /> numerical tests with the near-optimal shape<br /> parameter on the disk domain.<br /> STENCILS FROM RBF INTERPOLATION<br /> Definition 1 (stencil) Let D be a linear<br /> n<br /> differential operator, and X  xi i 1 a fixed<br /> irregular set of centres in Rd. A linear<br /> numerical differentiation formula for the<br /> operator D,<br /> n<br /> <br /> Du( x)   wi ( x)u ( xi ) ,<br /> <br /> (1)<br /> <br /> i 1<br /> <br /> is determined by the weights wi = wi (x) .<br /> T<br /> The vector w  w1 ,, wn  is called stencil.<br /> Definition 2 (positive definite function) A<br /> d<br /> continuous function  : R  R is called<br /> positive semi-definite if, for all n  N , all<br /> sets of pairwise<br /> distinct centers<br /> X  x1 ,, xn   R d , and all c = (c1, c2,<br /> …, cn)  Rn, the quadratic form<br /> 63<br /> <br /> Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên<br /> <br /> http://www.lrc-tnu.edu.vn<br /> <br /> Đặng Thị Oanh<br /> <br /> Tạp chí KHOA HỌC & CÔNG NGHỆ<br /> <br />   c c x<br /> n<br /> <br /> n<br /> <br /> j 1<br /> <br /> k 1<br /> <br /> j k<br /> <br /> j<br /> <br />  xk <br /> <br /> (2)<br /> <br /> is nonnegative. Function  is called positive<br /> definite if the quadratic form is positive for all<br /> c  R n \ 0.<br /> Definition 3 (conditionally positive definite<br /> function)<br /> A<br /> continuous<br /> function<br />  : R d  R is said to be conditionally<br /> positive semi-definite of order m (i.e. to have<br /> conditional positive definiteness of order m)<br /> if, for all n  N , all sets of pairwise distinct<br /> centers X  x1 ,, xn   R d , and all<br /> c  R n satisfying<br /> n<br /> <br /> c<br /> j 1<br /> <br /> j<br /> <br /> p( x j )  0<br /> <br /> n<br /> <br />  c c ( x<br /> <br /> j ,k 1<br /> <br /> j k<br /> <br /> j<br /> <br />  xk )<br /> <br /> is nonnegative,  is said to be conditionally<br /> positive definite of order m if the quadratic<br /> form is positive, unless c is zero.<br /> Definition 4 (Radial Basis Function (RBF))<br /> d<br /> In the Euclidean space R setting, an RBF is<br /> a function of the form<br /> n<br /> <br /> <br /> <br /> x   c j x  x j<br /> j 1<br /> <br /> 2<br /> <br /> ,<br /> <br /> (3)<br /> <br /> where x1 ,, xn are some scattered points,<br /> and x - x 2 denotes the Euclidean<br /> distance between x and x j ; c1,, cn are<br /> some constants, and<br /> function<br /> <br /> <br /> <br /> is a univariate<br /> <br />  : 0,   R.<br /> <br /> (4)<br /> <br /> Proposition 1 Assume D be a linear<br /> differential operator. Let  : R  R is a<br /> possitive definite function, set of pairwise<br /> distinct centers X  x1 ,, xn   R d and a<br /> function u : R d  R , the RBF interpolation<br /> s is sought in the form<br /> <br /> s( x)   a j x  x j , ( x) :   x<br /> n<br /> <br /> j 1<br /> <br /> Then, the stencil w for the numerical<br /> differentiation at x is given by<br /> 1<br /> (6)<br /> w   | X  D( x  ) | X ,<br /> Where<br /> <br /> <br /> <br /> <br /> <br /> (5)<br /> <br /> <br /> <br />  | X  ( xi  x j ) i , j 1 , D( x  ) | X <br /> n, n<br /> <br /> D( x  x1 ),, D( x  nxn )T<br /> <br /> <br /> <br /> <br /> <br /> <br /> <br /> Proof<br /> Since s( x) <br /> a j  x  x j is<br /> j<br /> <br /> 1<br /> interpolation function of function u, we have<br /> <br /> s( xi )  u( xi ), i  1,, n,<br /> that is<br /> n<br /> <br />  a ( x<br /> j 1<br /> <br /> for all real-valued polynomials p( x) of<br /> degree less than m, the quadratic form<br /> <br /> 78(02): 63 - 66<br /> <br /> j<br /> <br /> i<br /> <br />  x j )  u ( xi ), i  1,, n ,<br /> <br /> ( 7)<br /> which can be written in matrix form as the<br /> linear equation<br />  |X a  u |X ,<br /> with a symmetric positive definite matrix,<br /> where<br /> <br /> <br /> <br /> <br /> <br />  | X  ( xi  x j ) i , j 1 ,<br /> T<br /> u | X  u( x1 ),, u( xn ) ,<br /> T<br /> a  a1 ,, an  .<br /> n<br /> <br /> Since the function u is sufficiently smooth<br /> and the set of points x1 ,, xn  R d is<br /> sufficiently dense in a neighbourhood of x<br /> RBF interpolant s(x) provides a good<br /> approximation of u(x) [3]. Moreover, the<br /> derivatives of s are good approximations of<br /> the derivatives of u if  is sufficiently<br /> smooth [3]. Therefore, an approximation of<br /> Du(x), where D is a linear differential<br /> operator annihilating constants, may be<br /> considered in the form<br /> n<br /> <br /> n<br /> <br /> j 1<br /> <br /> i 1<br /> <br /> Du( x)  Ds( x)   a j D( x  x j )   wi u( xi )<br /> (8)<br /> where the weights wi (depending on x) exist<br /> because the coefficients a j of the<br /> interpolation function s defined by (5)-(7)<br /> depend linearly on the data u( xi ), i  1,, n<br /> . These weights can be found by solving the<br /> symmetric positive definite linear system<br />  | X w  D( x  ) | X , (9)<br /> that is<br /> <br /> 64<br /> <br /> Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên<br /> <br /> http://www.lrc-tnu.edu.vn<br /> <br /> Đặng Thị Oanh<br /> <br /> Tạp chí KHOA HỌC & CÔNG NGHỆ<br /> <br /> w   | X  D( x  ) | X<br /> <br /> ~<br />  DD( x  yi ), i  1, m.<br /> <br /> 1<br /> <br /> Proposition 2. Assume D be a linear<br /> differential operator. Let  : R  R is a<br /> positive definite or conditionally positive<br /> definite function order l  1 , set of pairwise<br /> distinct centers X  x1 ,, xn   R d and a<br /> function u : R d  R , the RBF interpolation<br /> s is sought in the form<br /> <br /> s( x)   a j x  x j   ~p ( x), ( x) :   x  ,<br /> n<br /> <br /> j 1<br /> <br /> where ~<br /> p is a polynomial of degree l . Then,<br /> the stencil w can be found by solving the<br /> symmetric positive definite linear system<br /> <br />  | X<br /> T<br /> 1<br /> where<br /> <br /> <br /> <br /> RBF-FD DISCRETISATION OF POISSON<br /> EQUATION<br /> In the finite difference method stencils are<br /> used for the discretisation of partial<br /> differential equations. Consider the Dirichlet<br /> problem for the Poisson equation in a<br /> bounded domain   R d : given a function f<br /> defined on  , and a function g defined on<br />  find u such that<br /> (10)<br /> u  f on <br /> <br /> u |  g.<br /> <br /> <br /> <br /> that for each    int a set<br /> <br /> n, n<br /> <br /> D( x  x1 ),, D( x  xn ),T , 1 : [11]T<br /> Proposition 3 Assume D be a differential<br /> operator of order k . Let  : R  R is a<br /> positive definite and 2k times continuously<br /> differentiable<br /> function.<br /> Let<br /> X  x1 ,, xn   R d<br /> and<br /> Y  y1 ,, ym   R d are two point sets in<br /> R d (which may coincide or overlap), and<br /> give a function u : R d  R . Consider the<br /> RBF interpolation s is sought in the form<br /> j 1<br /> <br /> ( x) :   x  ,<br /> ~<br /> <br /> the<br /> by<br /> for<br /> be<br /> <br /> n<br /> <br /> m<br /> ~<br /> w<br /> <br /> (<br /> x<br /> <br /> x<br /> )<br /> <br />  j i j  j D( xi  x j )  D( x  xi )<br /> j 1<br /> <br /> j 1<br /> <br /> i  1, n,<br /> n<br /> <br /> m<br /> <br /> j 1<br /> <br /> j 1<br /> <br /> ~<br />  w j D( yi  x j )   j DD( yi  y j )<br /> <br />   <br /> <br /> is<br /> <br /> chosen such that     and<br /> <br /> <br /> <br />  <br /> <br /> (12)<br /> <br />   int<br /> <br /> For each    int , choose a linear numerical<br /> differentiation formula for Laplace operator<br /> ,<br /> (13)<br /> u ( )   w , u ( ),<br />  <br /> w ,   , and replace (10)with stencil<br /> <br /> <br /> <br /> <br /> <br /> <br /> <br /> (11) by the system of linear equations<br /> <br />  w  uˆ( )  f ( ),<br /> <br /> n<br /> m<br /> ~<br /> s H ( x)   a j x  x j    b j D( x  y j ),<br /> <br /> where the operator D is defined by<br /> ~<br /> formula D  RD , where R is defined<br /> Ru ( x)  u( x) . Then, the stencil w, <br /> the numerical differentiation at x can<br /> found from the linear system<br /> <br /> (11)<br /> <br /> This problem can be discretised with the help<br /> of differentiation formulae (1) as follows. Let<br />    be a finite set discretisation centres,<br />  :    and  int   \  . Assume<br /> <br /> 1 w  D( x  ) | X <br />  <br /> ,<br /> 0  v   0<br /> <br /> <br />  | X  ( xi  x j ) i , j 1 , D( x  ) | X <br /> <br /> j 1<br /> <br /> 78(02): 63 - 66<br /> <br />  <br /> <br /> ,<br /> <br />    int (14)<br /> <br /> (15)<br /> uˆ ( )  g ( ),   <br /> If (14)-(15) is nonsingular, then its solution<br /> uˆ :   R can be compared with the vector<br /> u |  u( ) of the discretised exact<br /> solution of (10)-(11).<br /> A standard finite difference method is<br /> obtained from the above if we take   R d<br /> to be a square domain,  a uniformly spaced<br /> grid, and (13) the classical 5-point<br /> differentiation formula for the Laplacian.<br /> NUMERICAL EXAMPLE<br /> In the numerical results of this paper we<br /> restrict our attention to the Gaussian RBF<br /> 65<br /> <br /> Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên<br /> <br /> http://www.lrc-tnu.edu.vn<br /> <br /> Đặng Thị Oanh<br /> <br /> Tạp chí KHOA HỌC & CÔNG NGHỆ<br /> <br />  (r )  e ( r ) , which is positive definite for<br /> <br /> 78(02): 63 - 66<br /> <br /> 2<br /> <br /> any value of the shape parameter<br />  . For<br /> definiteness we take   1.24 , which is nearoptimal parameter (see [2]). RBF-FD<br /> meshless method for solving Possion equation<br /> as following: For each    int , stencil<br /> w ,   is found by solving the symmetric<br /> <br /> positive definite linear system (6), and replace<br /> (10)-(11) and we have (14)-(15).<br /> Test Problem Consider Dirichlet problem<br /> (10)-(11) with boundary conditions defined<br /> by the restriction of the test function on the<br /> boundary, where the domain  is disk with<br /> centre (0, 0), and radius r  1 , the right hand<br /> side<br /> is<br /> defined<br /> by<br /> 2<br /> f ( x, y)  2 sin(x) sin(y) . The exact<br /> solution is u( x, y)  sin(x) sin(y) .<br /> Numerical experiments To assess the quality<br /> of a discrete solution uˆ of the Dirichlet<br /> problem defined on a set of discretisation<br /> centres  , we consider the root mean square<br /> (rms) error against the values of the exact<br /> solution u on  int ,<br /> <br /> <br /> <br /> <br /> <br />  1<br /> rms : <br />  #  int<br /> <br />  uˆ( )  u( )<br /> <br /> 2<br /> <br />  1/ 2<br /> . (16)<br /> <br /> <br /> <br /> Apart from the RBF-FD solutions, this<br /> formula applies to the standard linear finite<br /> element method with midpoint quadrature<br /> rule on the corresponding triangulation. We<br /> will use rms of the finite element method as<br /> reference.<br /> In Figure 1, FEM corresponds to finite<br /> element method, Gauss-FD corresponds to<br /> RBF-FD method (formulas (14)-(15)) with<br /> <br /> stencil w defined by (6) in Proposition 1 for<br /> RBF Gaussian.<br /> The results of experiments show that the error<br /> in the case of using RBF-FD method based<br /> on the stencil obtained by RBF is much better<br /> in comparison with FEM.<br /> <br /> Figure 1. RBF solution with Gaussian on the<br /> quasi-uniform FEM centres using FEM stencil<br /> support  <br /> REFERENCES<br /> [1]. O. Davydov and D. T. Oanh. Adaptive<br /> meshless centres and RBF stencil for Poission<br /> equation. J. Comput. Phys., (230) 287-304, 2011.<br /> [2]. O. Davydov and D. T. Oanh. On optimal<br /> shape parameter for Gaussian RBF-FD<br /> approximation for Poission equation. Technical<br /> Report 2011- 01. University of Strathclyde,<br /> Department of Mathematics and Statistics. Jan.<br /> 2011,<br /> http://www.mathstat.strath.ac.uk/research/reports/<br /> 2011.<br /> [3]. H. Wendland. Scattered Data Approximation.<br /> Cambridge University Press, 2005.<br /> <br /> TÓM TẮT<br /> VECTƠ TRỌNG SỐ CHO HÀM POISSON<br /> Đặng Thị Oanh*<br /> Khoa Công nghệ thông tin - ĐH Thái Nguyên<br /> <br /> Trong bài báo này chúng tôi giới thiệu phƣơng pháp tìm các véc tơ trọng số stencil với sự trợ giúp<br /> của các hàm nội suy RBF. Các stencil này là cơ sở xây dựng lƣợc đồ không lƣới RBF-FD. Thử<br /> nghiệm cho thấy trên cùng một tập tâm, sai số của phƣơng pháp không lƣới RBF-FD bởi các<br /> stencil RBF với tham số hình dạng gần tối ƣu tốt hơn đáng kể sai số của phƣơng pháp FEM.<br /> Từ khóa: Hàm cơ sở bán kính (RBF); phương pháp không lưới<br /> *<br /> <br /> Email: dtoanhtn@gmail.com<br /> <br /> 66<br /> <br /> Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên<br /> <br /> http://www.lrc-tnu.edu.vn<br /> <br />
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2