Bài 2: phương trình đẳng cấp với sin và cos
lượt xem 11
download
Download
Vui lòng tải xuống để xem tài liệu đầy đủ
Cách 3. Phân tích thành phương trình tích 2. Các bài t p m u minh h a Bài 1. Gi i phương trình: 3sin 3x − 3 cos 9 x = 1 + sin 3 3x Giải 3sin 3x − 3 cos 9 x = 1 + 4 sin 3 3 x ⇔ ( 3sin 3x − 4 sin 3 3 x ) − 3 cos 9 x = 13 ⇔ sin 9 x − 3 cos 9 x = 1 ⇔ 1 sin 9 x − cos 9 x = 1 ⇔ sin 9 x − π = 1 2 2 2 3 2 9 x − π = π + 2 k π x = π
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Bài 2: phương trình đẳng cấp với sin và cos
- Bài 1. Phương trình ng c p b c nh t, b c hai, b c ba v i sinx, cosx Bài 1. PHƯƠNG TRÌNH NG C P B C NH T V I SINX, COSX 1. Phương pháp chung: a sin x + b cos x = c ; a 2 + b 2 > 0 (1) Cách 1. (1) ⇔ c = a sin x + b cos x = cos ( x − α ) 2 2 2 2 a +b a +b a + b2 2 V i a = sin α ; b = cos α ; c = cos β ⇒ x = α ± β + 2k π 2 2 2 2 a +b a +b a + b2 2 Chú ý: (1) có nghi m ⇔ c 2 ≤ a 2 + b 2 Cách 2. Xét cos x = 0 là nghi m c a (1) ⇔ b + c = 0 2 2 Xét b + c ≠ 0 . t t = tan x thì sin x = 2t 2 ; cos x = 1 − t 2 . Khi ó 2 1+ t 1+ t (1) ⇔ f ( t ) = ( c + b ) t 2 − 2at + ( c − b ) = 0 Cách 3. Phân tích thành phương trình tích 2. Các bài t p m u minh h a Bài 1. Gi i phương trình: 3sin 3x − 3 cos 9 x = 1 + sin 3 3x Gi i 3sin 3x − 3 cos 9 x = 1 + 4 sin 3 3 x ⇔ ( 3sin 3x − 4 sin 3 3 x ) − 3 cos 9 x = 1 ⇔ sin 9 x − 3 cos 9 x = 1 ⇔ 1 sin 9 x − 2 2 3 cos 9 x = 1 ⇔ sin 9 x − π = 1 2 3 2 ( ) 9 x − π = π + 2 k π x = π + 2k π 3 6 18 9 ( ⇔ ⇔ k ∈ ») π = 5π + 2 k π 7 π + 2k π 9 x − x = 3 6 54 9 Bài 2. Gi i phương trình: cos 7 x.cos 5 x − 3 sin 2 x = 1 − sin 7 x.sin 5 x (1) Gi i (1) ⇔ ( cos 7 x.cos 5 x + sin 7 x.sin 5 x ) − 3 sin 2 x = 1 ⇔ cos ( 7 x − 5 x ) − 3 sin 2 x ⇔ cos 2 x − 3.sin 2 x = 1 3 ⇔ 1 cos 2 x − sin 2 x = 1 ⇔ cos π cos 2 x − sin π sin 2 x = 1 2 2 2 3 3 2 ( 2 ) ⇔ cos 2 x + π = 1 ⇔ 2 x + π = ± π + 2k π ⇔ x = k π ∨ x = −π + k π ( k ∈ » ) 3 3 3 3 219
- Chương VII. Phương trình lư ng giác – Tr n Phương Bài 3. Gi i phương trình: 2 2 ( sin x + cos x ) cos x = 3 + cos 2 x (1) Gi i (1) ⇔ 2 sin 2 x + 2 (1 + cos 2 x ) = 3 + cos 2 x ⇔ 2 sin 2 x + ( 2 − 1) cos 2 x = 3 − 2 a 2 + b 2 = ( 2 ) 2 + ( 2 − 1) 2 = 5 − 2 2 .Ta có 2 . Ta s ch ng minh: a 2 + b 2 < c 2 c = ( 3 − 2 ) = 11 − 6 2 2 2 ⇔ 5 − 2 2 < 11 − 6 2 ⇔ ( 4 2 ) < 6 2 ⇔ 32 < 36 ( úng). V y (1) vô nghi m. ( ) ( Bài 4. Gi i phương trình: 3sin x − π + 4 sin x + π + 5 sin 5 x + π = 0 3 6 6 ) ( ) Gi i ( ) ( ) ⇔ 3sin x − π + 4 cos π − x + π = −5sin 5 x + π 3 2 6 6 ( ) ( 3 ) 3 ( ) 6 ( ) ⇔ 3sin x − π + 4 cos π − x = 5sin 5 x + π + π . t sin α = 4 , cos α = 3 5 5 ⇔ cos α sin x − π + sin α.cos ( x − π ) = sin ( 5 x + 7 π ) 3 3 6 ⇔ sin ( x − π ) + α = sin ( 5 x + 7 π ) ⇔ x = 9π + α + k π ∨ x = π − α + k π 3 6 24 4 2 36 6 3 Bài 5. Gi i phương trình: 4 sin 3 x cos 3x + 4 cos 3 x sin 3 x + 3 3 cos 4 x = 3 (1) Gi i (1) ⇔ [3sin x − sin 3 x ] cos 3x + [ 3cos x + cos 3x ] sin 3x + 3 3 cos 4 x = 3 ⇔ 3 [sin x cos 3 x + sin 3 x cos x ] + 3 3 cos 4 x = 3 ⇔ sin 4 x + 3 cos 4 x = 1 ⇔ 1 sin 4 x + 2 2 3 cos 4 x = 1 ⇔ cos π sin 4 x + sin π cos 4 x = sin 4 x + π = 1 2 3 3 3 2 ( ) ⇔ x = −π + k π ∨ x = π + k π ( k ∈ » ) 24 2 8 2 Bài 6. Gi i phương trình: 3sin x + cos x = 1 Gi i Ta có 3sin x + cos x = 1 ⇔ 3sin x = 1 − cos x 2 2 2 2 ( 2 ) ⇔ 6 sin x cos x = 2 sin 2 x ⇔ 2 sin x 3cos x − sin x = 0 . Xét 2 kh năng 2 a. sin x = 0 ⇔ x = k π ⇔ x = 2k π 2 2 b. 3cos x − sin x = 0 ⇔ tg x = 3 ⇔ x = α + k π ⇔ x = 2α + 2k π ( k ∈ » ) 2 2 2 2 220
- Bài 1. Phương trình ng c p b c nh t, b c hai, b c ba v i sinx, cosx Bài 7. Gi i phương trình: sin x + 5 cos x = 1 (1) Gi i 2 ( 2 2 2 )( 2 2 ) ( (1) ⇔ 5 cos x = 1 − sin x ⇔ 5 cos x − sin x cos x + sin x = cos x − sin x 2 ) ( 2 )( 2 2 ) ⇔ cos x − sin x 4 cos x + 6 sin x = 0 ⇔ tan x = 1 ∨ tan x = − 2 = tan α 2 2 2 3 ⇔ x = π + k π ∨ x = α + k π ⇔ x = π + 2 k π ∨ x = 2α + 2 k π ( k ∈ » ) 2 4 2 2 Bài 8. Gi i phương trình: sin x + 3 cos x + sin x + 3 cos x = 2 (1) Gi i Ta có: sin x + 3 cos x = 2 1 sin x + 2 2 3 cos x = 2 sin x + π 3 ( ) ( ) t t = sin x + 3 cos x = 2 sin x + π ⇒ 0 ≤ t ≤ 2 , khi ó 3 (1) ⇔ t + t = 2 ⇔ t = 2 − t ⇔ t = ( 2 − t ) 2 ⇔ t 2 − 5t + 4 = 0 ⇔ t = 1∈ [ 0; 2] ( 3 ) (3 2 ) ⇔ 2 sin x + π = 1 ⇔ sin x + π = 1 ⇔ x = −π + 2k π ∨ x = π + 2k π ( k ∈ » ) 6 2 Bài 9. Gi i phương trình: (1 + 3 ) sin x + (1 − 3 ) cos x = 2 (1) Gi i Do b + c = (1 + 3 ) + 2 = 2 − 3 ≠ 0 nên cos x = 0 không là nghi m c a (1) 2 2 t t = tan x ⇒ sin x 2t 2 và cos x = 1 − t 2 , khi ó 2 1+t 1+ t 2 (1) ⇔ (1 + 3 ) 2t + (1 − 3 ) 1 − t = 2 ⇔ 2 (1 + 3 ) t + (1 − 3 ) (1 − t 2 ) = 2 (1 + t 2 ) 1+ t2 1+ t2 ⇔ ( 3 − 3 ) t 2 − 2 (1 + 3 ) t + (1 + 3 ) = 0 ⇔ 1+ 3 t = 1 ∨ t =− ⇔ tan x = tan π ∨ tan x = tan 5π ⇔ x = π + 2k π ∨ x = 5π + 2k π 3 1− 3 2 6 2 12 3 6 Bài 10. Gi i phương trình: sin 3 x + ( 3 − 2 ) cos 3 x = 1 (1) Gi i Do b + c = ( 3 − 2 ) + 1 = 3 − 1 ≠ 0 nên cos 3 x = 0 không là nghi m c a (1) 2 221
- Chương VII. Phương trình lư ng giác – Tr n Phương 2 t t = tan 3 x ⇒ sin 3 x = 2t 2 và cos 3 x = 1 − t 2 , khi ó 2 1+ t 1+ t (1) ⇔ 2t + ( 3 − 2 ) (1 − t 2 ) = 1 + t 2 ⇔ (1 − 3 ) t 2 + 2t + ( 3 − 3) = 0 t = 1 ⇔ ⇔ tan 3x = 1 ∨ tan 3 x = 3 ⇔ x = π + 2k π ∨ x = 2π + 2k π ( k ∈ » ) t = 3 2 2 6 3 9 3 Bài 11. Tìm m 2 sin x + m cos x = 1 − m (1) có nghi m x ∈ −π , π 2 2 Gi i Do b + c = m + (1 − m ) ≠ 0 nên cos x = 0 không là nghi m c a (1) 2 2 t t = tan x thì (1) ⇔ 2 ⋅ 2t 2 + m ⋅ 1 − t 2 = 1 − m 2 1+ t 1+ t ⇔ 4t + m (1 − t 2 ) = (1 − m ) (1 + t 2 ) ⇔ f ( t ) = t 2 − 4t + 1 − 2m = 0 Cách 1: Yêu c u bài toán ⇔ f ( t ) = t 2 − 4t + 1 − 2m = 0 có nghi m t ∈ [ −1,1] Xét f ( −1) = 0 ⇔ 6 − 2m = 0 ⇔ m = 3 th a mãn Xét f (1) = 0 ⇔ −2 − 2m = 0 ⇔ m = −1 th a mãn Xét f ( t ) = 0 có 1 nghi m t ∈ ( −1,1) và 1 nghi m t ∉ [ −1,1] ⇔ f ( −1) f (1) = ( 6 − 2m ) ( −2 − 2m ) < 0 ⇔ ( 2m − 6 ) ( 2m + 2 ) < 0 ⇔ −1 < m < 3 Xét f ( t ) = 0 có 2 nghi m t1 , t 2 th a mãn −1 < t1 ≤ t 2 < 1 { } ⇔ ∆ ′ ≥ 0; 1. f ( −1) > 0 ; 1. f (1) > 0; − 1 < S < 1 , h này vô nghi m 2 K t lu n: (1) có nghi m x ∈ −π , π ⇔ −1 ≤ m ≤ 3 . 2 2 Cách 2: f ( t ) = t 2 − 4t + 1 − 2m = 0 có nghi m t ∈ [ −1,1] ⇔ g ( t ) = 1 t 2 − 2t + 1 = m có nghi m t ∈ [ −1,1] 2 2 Ta có: g ′ ( t ) = t − 2 < 0 ∀t ∈ [ −1,1] ⇒ g ( t ) ngh ch bi n trên [ −1,1] Suy ra t p giá tr g ( t ) là o n g (1) , g ( −1) ≡ [ −1, 3] . T ó (1) có nghi m x ∈ −π , π ⇔ g ( t ) = m có nghi m t ∈ [ −1,1] ⇔ −1 ≤ m ≤ 3 2 2 222
- Bài 1. Phương trình ng c p b c nh t, b c hai, b c ba v i sinx, cosx II. PHƯƠNG TRÌNH NG C P B C 2 V I SINX, COSX 1. Phương pháp chung a sin 2 x + b sin x cos x + c cos 2 x + d = 0 v i a 2 + b 2 + c 2 > 0 (1) Bư c 1: Xét cos x = 0 có là nghi m c a (1) hay không ⇔ a + d = 0 Bư c 2: Xét a + d ≠ 0 ⇒ cos x = 0 không là nghi m c a (1) Chia 2 v c a (1) cho cos 2 x ≠ 0 ta nh n ư c phương trình (1) ⇔ a tan 2 x + b tan x + c + d (1 + tan 2 x ) = 0 . t t = tan x (1) ⇔ f ( t ) = ( a + d ) t 2 + bt + ( c + d ) = 0 Bư c 3: Gi i và bi n lu n f ( t ) = 0 ⇒ Nghi m t 0 = tg x ⇒ nghi m x. 2. Các bài t p m u minh h a Bài 1. a. Gi i phương trình: sin 2 x + 2 sin x cos x + 3cos 2 x − 3 = 0 b. Gi i phương trình: sin 2 x − 3sin x cos x + 1 = 0 Gi i a. sin 2 x + 2 sin x cos x + 3cos 2 x − 3 = 0 (1) cos x = 0 2 sin x = 1 N u cos x = 0 là nghi m c a (1) thì t (1) ⇒ 2 ⇔ 2 sin x − 3 = 0 sin x = 3 ⇒ Vô lý. Chia 2 v c a (1) cho cos 2 x ≠ 0 ta nh n ư c (1) ⇔ tan 2 x + 2 tan x + 3 − 3 (1 + tan 2 x ) = 0 ⇔ 2 tan x − 2 tan 2 x = 0 tan x = 0 x = kπ ⇔ 2 tan x (1 − tan x ) = 0 ⇔ ⇔ (k ∈ ») tan x = 1 x = π + kπ 4 b. sin 2 x − 3sin x cos x + 1 = 0 (2) cos x = 0 N u cos x = 0 là nghi m c a (2) thì t (2) ⇒ 2 ⇒ Vô lý sin x + 1 = 0 Chia 2 v c a (2) cho cos 2 x ≠ 0 ta nh n ư c phương trình ( 2 ) ⇔ tan 2 x − 3 tan x + (1 + tan 2 x ) = 0 ⇔ 2 tan 2 x − 3 tan x + 1 = 0 tan x = 1 = tan π π ( tan x − 1) ( 2 tan x − 1) = 0 ⇔ 4 ⇔ x = 4 + k π ( k ∈ ») ⇔ 1 x = α + kπ tan x = = tan α 2 223
- Chương VII. Phương trình lư ng giác – Tr n Phương Bài 2. a. Gi i phương trình: 4 3 sin x cos x + 4 cos 2 x = 2 sin 2 x + 5 2 (2 2) ( ) 2 ( b. GPT: 3sin 2 x ( 3π − x ) + 2 sin 5π + x cos π + x − 5sin 2 3π + x = 0 ) Gi i a. Phương trình ⇔ 2 sin 2 x − 4 3 sin x cos x − 4 cos 2 x + 5 = 0 (1) 2 N u cos x = 0 là nghi m c a (1) thì t (1) ⇒ 2 sin x + 5 = 0 ⇒ Vô lý 2 2 Chia 2 v c a (1) cho cos 2 x ≠ 0 ta nh n ư c phương trình (1) ⇔ 2 tan 2 x − 4 3 tan x − 4 + 5 (1 + tan 2 x ) = 0 ⇔ 9 tan 2 x − 8 3 tan − 3 = 0 2 − 3 ⇔ tan x = 3 = tan π ∨ tan x = = tan α ⇔ x = π + k π ∨ x = α + k π ( k ∈ » ) 3 9 3 ( 2 ) ( 2 ) 2 ( b. 3sin 2 x ( 3π − x ) + 2 sin 5π + x cos π + x − 5sin 2 3π + x = 0 ) ⇔ 3sin 2 x − 2 sin x cos x − 5 cos 2 x = 0 ( 2 ) cos x = 0 N u cos x = 0 là nghi m c a (1) thì t (2) ⇒ ⇒ Vô lý sin x = 0 Chia 2 v c a (2) cho cos 2 x ≠ 0 ta nh n ư c phương trình tan x = −1 = tan −π x = −π + k π 4 ( 2 ) ⇔ 3 tan x − 2 tan x − 5 = 0 ⇔ 2 ⇔ 4 tan x = 5 = tan α x = α = kπ 3 Bài 3. GPT: a. 3 sin x + cos x = 1 b. 4 sin x + 6 cos x = 1 cos x cos x Gi i a. 3 sin x + cos x = 1 ⇔ 3 sin x + cos x = 1 ⇔ 3 tan x + 1 = 1 + tan 2 x cos x cos x cos 2 x tan x = 0 ⇔ tan 2 x − 3 tan x = 0 ⇔ tan x ( tan x − 3 ) = 0 ⇔ tan x = 3 { 3 } ⇔ x ∈ k π; π + k π b. 4 sin x + 6 cos x = 1 ⇔ 4 sin x + 6 cos x = 12 ⇔ 4 tan x + 6 = 1 + tan 2 x ⇔ cos x cos x cos x tan x = −1 = tan −π x = −π + k π tan 2 x − 4 tan x − 5 = 0 ⇔ ( tan x + 1)( tan x − 5) = 0 ⇔ 4 ⇔ 4 tan x = 5 = tan α x = α + kπ 224
- Bài 1. Phương trình ng c p b c nh t, b c hai, b c ba v i sinx, cosx Bài 4. Gi i phương trình: 7 sin 2 x + 2 sin 2 x − 3cos 2 x − 3 3 15 = 0 (1) Gi i cos x = 0 N u cos x = 0 là nghi m c a (1) thì t (1) ⇒ 2 ⇒ Vô lý 7 sin x = 3 3 15 Chia 2 v c a (1) cho cos 2 x ≠ 0 ta có (1) ⇔ 7 tan 2 x + 4 tan x − 3 − 33 15 (1 + tan 2 x ) = 0 ⇔ ( 7 − 3 3 15 ) tan 2 x + 4 tan x − ( 3 + 3 3 15 ) = 0 ( 2 ) . Ta có ∆ ′ = 25 + 12 3 15 − 9 3 15 2 t t = 3 15 ⇒ t 3 = 15 ⇒ 5 t 3 = 25 , ta s ch ng minh ∆′ 0, ∀t ∈( 0, 1) t2 + 2 ( t 2 + 2) 2 ( t 2 + 2) 2 ⇒ g ( t ) tăng / ( 0,1) ⇒ g ( t ) = m có nghi m t ∈ ( 0,1) ⇔ m ∈ ( g ( 0 ) , g (1) ) ≡ (1, 2 ) . Bài 6. Cho phương trình: sin 2 x + ( 2m − 2 ) sin x cos x − ( m + 1) cos 2 x = m (1) a. GPT: m = −2 b. Tìm m phương trình có nghi m. Gi i N u cos x = 0 là nghi m c a phương trình (1) thì t (1) suy ra cos x = 0 sin 2 x = 1 m = 1 m = 1 m = 1 2 ⇔ 2 ⇔ 2 ⇔ ⇔ π sin x = m sin x = m sin x = 1 cos x = 0 x = + k π 2 N u m ≠ 1 thì cos x = 0 không là nghi m c a (1), khi ó chia 2 v c a (1) cho cos 2 x ≠ 0 ta có: (1) ⇔ tan 2 x + ( 2m − 2 ) tan x − ( m + 1) = m (1 + tan 2 x ) 225
- Chương VII. Phương trình lư ng giác – Tr n Phương ⇔ f ( tan x ) = ( m − 1) tan 2 x − 2 ( m − 1) tan x + 2m + 1 = 0 a. N u m = −2 thì (1) ⇔ −3 ( tan x − 1) = 0 ⇔ x = π + k π 2 4 m = 1 m = 1 b. (1) có nghi m ⇔ m ≠ 1 ⇔ m ≠ 1 ⇔ −2 ≤ m ≤ 1 ∆ ′ ≥ 0 2 −m − m + 2 ≥ 0 Bài 7. Cho phương trình: cos 2 x − sin x cos x − 2 sin 2 x − m − 0 (1) a. Gi i phương trình (1) khi m = 1 b. Gi i bi n lu n theo m Gi i a. V i m = 1 ta có (1) ⇔ cos 2 x − sin x cos x − 2 sin 2 x − 1 = 0 ⇔ ( cos x + 3sin x ) sin x = 0 ⇔ sin x = 0 ∨ co tg x = −3 = cotg α ⇔ x ∈ {k π ; α + k π} b. (1) ⇔ 1 + cos 2 x − 1 sin 2 x − (1 − cos 2 x ) − m = 0 ⇔ 3cos 2 x − sin 2 x = 2m + 1 2 2 ⇔ 3 cos 2 x − 1 sin 2 x = 2m + 1 . t cos α = 3 , sin α = 1 , khi ó ta có 10 10 10 10 10 cos α cos 2 x − sin α sin 2 x = 2m + 1 ⇔ cos ( 2 x + α ) = 2m + 1 10 10 −1 − 10 −1 + 10 + N u 2m + 1 > 1 ⇔ m < ∪ m > thì (2) vô nghi m 10 2 2 −1 − 10 −1 + 10 + N u 2m + 1 ≤ 1 ⇔ m ∈ , thì t 2m + 1 = cos β 10 2 2 10 ±β − α Khi ó (1) ⇔ ( 2 ) ⇔ cos ( 2 x + α ) = cos β ⇔ x = + kπ 2 Bài 8. Gi i và bi n lu n: m sin 2 x + 4 sin x cos x + 2 cos 2 x = 0 (1) Gi i cos x = 0 • m = 0 , (1) ⇔ 2 cos x ( 2sin x + cos x ) = 0 ⇔ cot x = −2 = cot α { ⇔ x ∈ π + kπ; α + kπ 2 } • m ≠ 0 thì (1) ⇔ m tan 2 x + 4 tan x + 2 = 0 v i ∆ ′ = 4 − 2m + N u m > 2 thì (1) vô nghi m; N u m = 2 thì tan x = −1 ⇔ x = −π + k π 4 −2 ± 4 − 2m + N u 0 ≠ m < 2 thì tan x = = tan β ⇔ x = β + k π . m 226
- Bài 1. Phương trình ng c p b c nh t, b c hai, b c ba v i sinx, cosx III. PHƯƠNG TRÌNH NG C P B C 3 V I SINX, COSX 1. Phương pháp chung a sin 3 x + b sin 2 x cos x + c sin x cos 2 x + d cos 3 x = 0 v i a 2 + b 2 + c 2 + d 2 > 0 (1) a sin 3 x + b sin 2 x cos x + c sin x cos 2 x + d cos 3 x + ( m sin x + n cos x ) = 0 Bư c 1: Xét cos x = 0 có là nghi m c a phương trình hay không Bư c 2: Xét cos x ≠ 0 không là nghi m c a phương trình. Chia 2 v c a (1) cho cos 3 x ≠ 0 và s d ng công th c 1 = 1 + tan 2 x ; sin x = tan x (1 + tan 2 x ) cos 2 x cos 3 x ta nh n ư c phương trình b c 3 n tan x . Bư c 3: Gi i và bi n lu n phương trình b c 3 n tg x . 2. Các bài t p m u minh h a Bài 1. Gi i phương trình: 4 sin 3 x + 3cos 3 x − 3sin x − sin 2 x cos x = 0 (1) Gi i N u cos x = 0 là nghi m c a (1) thì t (1) suy ra cos x = 0 sin x = 1 ∨ sin x = −1 3 ⇔ 3 ⇒ Vô lý 4 sin x − 3sin x = 0 4 sin x − 3sin x = 0 Chia 2 v c a (1) cho cos 3 x ≠ 0 ta có (1) ⇔ 4tan 3 x + 3 − 3tan x (1+ tan 2 x) − tan 2 x = 0 ⇔ tan 3 x − tan 2 x − 3 tan x (1 + tan 2 x ) − tan 2 x = 0 ⇔ ( tan x − 1) ( tan x 2 − 3) = 0 ⇔ tan x = 1 ∨ tan x = ± 3 ⇔ x = π + k π ∨ x = ± π + k π ( k ∈ » ) 4 3 Bài 2. Gi i phương trình: sin 2 x.sin 2 x + sin 3 x = 6 cos 3 x (1) Gi i (1) ⇔ sin x ( 2 sin x cos x ) + 3sin x − 4 sin 3 x = 6 cos 3 x ⇔ 4 sin 3 x − 3sin x − 2 sin 2 x cos x + 6 cos 3 x = 0 (2) N u cos x = 0 là nghi m c a (2) thì t (2) suy ra cos x = 0 sin x = 1 ∨ sin x = −1 3 ⇔ 3 ⇒ Vô lý 4 sin x − 3sin x = 0 4 sin x − 3sin x = 0 Chia 2 v c a (2) cho cos 3 x ≠ 0 ta có ( 2 ) ⇔ tan 3 x − 2 tan 2 x − 3 tan x + 6 = 0 { ⇔ ( tan x − 2) ( tan 2 x − 3) = 0 ⇔ tan x = 2 = tan α ∨ tan x = ± 3 ⇔ x ∈ α + k π ; ± π + k π 3 } 227
- Chương VII. Phương trình lư ng giác – Tr n Phương Bài 3. Gi i phương trình: 1 + 3sin 2 x = 2 tan x Gi i i u ki n: cos x ≠ 0 ⇔ x ≠ π + k π (1) 2 1 + 3sin 2 x = 2 tan x ⇔ 1 + 6 sin x cos x = 2 tan x ⇔ 1 + 6 tan x = 2 tan x ⋅ 1 cos 2 x cos 2 x ⇔ (1 + tan 2 x ) + 6 tan x = 2 tan x (1 + tan 2 x ) ⇔ 2 tan 3 x − tan 2 x − 4 tan x − 1 = 0 tan x = −1 x = − π + nπ ⇔ ( tan x + 1) ( 2 tan x − 3 tan x − 1) = 0 ⇔ 2 ⇔ 4 tan x = 3 ± 17 = tan α x = α + nπ 4 1,2 1,2 Bài 4. Gi i phương trình: ( ) 2 sin 3 x + π = 2 sin x (1) 4 Gi i 3 ( ) 4 4 ( ) (1) ⇔ 2 2 sin 3 x + π = 4sin x ⇔ 2 sin x + π = 4sin x ⇔ ( sin x + cos x ) 3 = 4sin x N u cos x = 0 là nghi m c a (1) thì t (1) suy ra cos x = 0 sin x = 1 ∨ sin x = −1 3 ⇔ 3 ⇒ Vô lý sin x = 4 sin x sin x − 4 sin x = 0 Chia 2 v c a (1) cho cos 3 x ≠ 0 ta có (1) ⇔ ( tan x + 1) 3 = 4 tan x (1 + tan 2 x ) ⇔ tan 2 x + 3tan 2 x + 3tan x + 1 = 4 tan 3 x + 4 tan x ⇔ 3tan 3 x − 3tan 2 x + tan x −1 = 0 ⇔ ( tan x −1) ( 3tan 2 x +1) = 0 ⇔ tan x = 1 ⇔ x = π + k π 4 ( Bài 5. Gi i phương trình: 8 cos 3 x + π = cos 3 x 3 ) Gi i 3 ( 3 ) 8 cos 3 x + π = cos 3 x ⇔ 8 cos x.cos π − sin x sin π = cos 3x 3 3 3 3 ⇔ ( cos x − 3 sin x ) = 4 cos 3 x − 3cos x ⇔ ( 3 sin x − cos x ) − 3cos x + 4 cos 3 x = 0 (1) N u cos x = 0 là nghi m c a (1) thì t (1) suy ra cos x = 1 ⇒ 0 = cos 2 x + sin 2 x = 1 ⇒ 0 = 1 ⇒ Vô lý sin x = 0 228
- Bài 1. Phương trình ng c p b c nh t, b c hai, b c ba v i sinx, cosx 3 Chia 2 v c a (1) cho cos 3 x ≠ 0 ta có (1) ⇔ ( 3. tan x − 1) − 3 (1 + tan 2 x ) + 4 = 0 2 ⇔ 3 3 tan 3 x − 3 ( 3 tan x ) + 3 3 tan x − 1 − 3 (1 + tan 2 x ) + 4 = 0 ⇔ 3 3 tan 3 x − 12 tan 2 x + 3 3 tan x = 0 ⇔ tan x ( 3 tan 2 x − 4 tan x + 3 ) = 0 3 6 3 { ⇔ tan x = 0 ∨ tan x = 1 ∨ tan x = 3 ⇔ x ∈ k π ; π + k π ; π + k π ( k ∈ » ) } ( Bài 6. Gi i phương trình: sin 3 x − π = 2 sin x (1) 4 ) Gi i 3 ( 4 ) 4 ( (1) ⇔ 2 2 sin 3 x − π = 4 sin x ⇔ 2 sin x − π = 4 sin x ) ⇔ ( sin x − cos x ) = 4 sin x ⇔ ( tan x − 1) = 4 tan x (1 + tan 2 x ) 3 3 ⇔ tan 3 x − 3 tan 2 x + 3 tan x − 1 = 4 tan 3 x + 4 tan x ⇔ 3 tan 3 x + 3 tan 2 x + tan x + 1 = 0 ⇔ ( tan x + 1) ( 3 tan 2 x + 1) = 0 ⇔ tan x + 1 = 0 ⇔ tan x = −1 ⇔ x = − π + k π ( k ∈ » ) 4 Bài 7. Gi i phương trình: 6 sin x − 2 cos 3 x = 5sin 4 x cos x (1) 2 cos 2 x Gi i i u ki n: cos 2 x ≠ 0 ⇔ 2 x ≠ π + k π ⇔ x ≠ π + k π ( 2 ) 2 4 2 V i i u ki n (2) ta có (1) ⇔ 6 sin x − 2 cos 3 x = 5sin 2 x cos x ⇔ 6 sin x − 2 cos 3 x = 5 ( 2 sin x cos x ) cos x ⇔ 3sin x − cos 3 x − 5 sin x cos 2 x = 0 (3) N u cos x = 0 là nghi m c a (3) thì t (3) suy ra cos x = 0 ⇒ 0 = sin 2 x + cos 2 x = 1 ⇒ 0 = 1 ⇒ Vô lý sin x = 0 Chia 2 v c a (3) cho cos 3 x ≠ 0 ta có 3 tan x (1 + tan 2 x ) − 1 − 5 tan x = 0 ⇔ ( tan x − 1) ( 3. tan 2 x + 3 tan x + 1) = 0 2 ( ⇔ ( tan x − 1) 3 tan x + 1 2 ) + 1 = 0 ⇔ tan x = 1 ⇔ x = π + nπ 4 4 Do x = π + nπ mâu thu n v i (2): x ≠ π + k π nên phương trình (1) vô nghi m. 4 4 2 229
- Chương VII. Phương trình lư ng giác – Tr n Phương Bài 8. ( 4 − 6m ) sin 3 x + 3 ( 2m − 1) sin x + 2 ( m − 2 ) sin 2 x cos x − ( 4m − 3) cos x = 0 a. Gi i phương trình khi m = 2 b. Tìm m phương trình có nghi m duy nh t x ∈ 0, π 4 Gi i N u cos x = 0 là nghi m c a phương trình thì t phương trình suy ra cos x = 0 sin x = 1 ∨ sin x = −1 ⇔ ⇒ Vô lý ( 4 − 6 ) sin x + ( 6m − 3) sin x = 0 ( 4 − 6m ) sin 3 x + ( 6m − 3) sin x 3 Chia 2 v c a phương trình cho cos 3 x ≠ 0 ta có phương trình ⇔ ( 4 − 6m) tan 3 x + 3 ( 2m − 1) tan x (1 + tan 2 x ) + 2 ( m − 2) tan 2 x − ( 4m − 3) (1 + tan 2 x ) = 0 ⇔ tan 3 x − ( 2m + 1) tan 2 x + 3 ( 2m − 1) tan x − ( 4m − 3) = 0 ⇔ ( tan x − 1) [ tan 2 x − 2m tan x + ( 4m − 3)] = 0 (1) a. N u m = 2 thì (1) ⇔ ( tan x − 1) ( tan 2 x − 4 tan x + 5 ) = 0 ⇔ ( tan x − 1) ( tan x − 2 ) + 1 ⇔ tan x = 1 ⇔ x = π − k π ( k ∈ » ) 2 4 b. t t = tan x ∈ [ 0,1] ∀x ∈ 0, π , khi ó phương trình 4 t − 1 = 0 ⇔ t = 1∈ [ 0,1] (1) ⇔ ( t − 1) ( t 2 − 2mt + 4m − 3) = 0 ⇔ 2 t − 2mt + 4m − 3 = 0 Xét phương trình: t 2 − 2mt + 4m − 3 = 0 v i t ∈ [ 0,1] 2 ( t − 1) ( t − 3) ⇔ t 2 − 3 = 2m ( t − 2 ) ⇔ g ( t ) = t − 3 = 2m . Ta có g ′ ( t ) = ≥ 0 ∀t ∈ [ 0, 1] t −2 ( t − 2) 2 ⇒ g (t ) ng bi n trên [ 0,1] ⇒ T p giá tr g ( t ) là [ g ( 0 ) , g (1)] = 3 ; 2 2 ( ) phương trình (1) có nghi m duy nh t x ∈ 0, π thì phương trình g ( t ) = 2m 4 ho c vô nghi m t ∈ [ 0,1] ho c có úng 1 nghi m t = 1 2m ≥ 2 m ≥ 1 ⇔ g ( t ) = 2m vô nghi m t ∈ [ 0,1) ⇔ ⇔ 2m < 3 m < 3 2 4 230
- Bài 1. Phương trình ng c p b c nh t, b c hai, b c ba v i sinx, cosx 231
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Toán học lớp 10: Phương pháp đặt ẩn phụ giải hệ phương trình (Phần 2) - Thầy Đặng Việt Hùng
7 p |
427
|
107
-
Luyện thi Đại học môn Toán: Bài toán lập phương trình đường thẳng (Phần 2) - Thầy Đặng Việt Hùng
5 p |
337
|
71
-
Toán học lớp 11: Một số dạng phương trình lượng giác thường gặp (phần 2) - Thầy Đặng Việt Hùng
2 p |
242
|
56
-
Toán học lớp 10: Phương trình chứa căn (Phần 2) - Thầy Đặng Việt Hùng
2 p |
152
|
56
-
Bài 29: QUÁ TRÌNH ĐẲNG NHIỆT ĐỊNH LUẬT BÔI - LƠ – MA – RI - OT
4 p |
467
|
52
-
Toán học lớp 10: Phương trình đường thẳng (Phần 2) - Thầy Đặng Việt Hùng
2 p |
211
|
40
-
Toán học lớp 10: Hệ phương trình cơ bản (Phần 2) - Thầy Đặng Việt Hùng
2 p |
147
|
35
-
Luyện thi Đại học môn Toán 2015: Bất phương trình mũ (phần 2) - Thầy Đặng Việt Hùng
3 p |
182
|
29
-
Luyện thi Đại học môn Toán: Bài toán lập phương trình mặt phẳng (Phần 2) - Thầy Đặng Việt Hùng
2 p |
153
|
28
-
Luyện thi Đại học môn Toán 2015: Phương trình logarith (phần 2) - Thầy Đặng Việt Hùng
2 p |
134
|
25
-
Toán học lớp 10: Phương pháp thế giải hệ phương trình (Phần 2) - Thầy Đặng Việt Hùng
2 p |
112
|
25
-
Luyện thi ĐH môn Toán 2015: Phương trình mũ-phần 2 - Thầy Đặng Việt Hùng
5 p |
209
|
25
-
Luyện thi Đại học môn Toán 2015: Hệ phương trình mũ và logarith (phần 2) - Thầy Đặng Việt Hùng
4 p |
124
|
21
-
Luyện thi Đại học môn Toán 2015: Bất phương trình logarith (phần 2) - Thầy Đặng Việt Hùng
5 p |
114
|
11
-
Luyện thi ĐH môn Toán 2015: Phương trình Logarith-phần 2 - Thầy Đặng Việt Hùng
2 p |
113
|
10
-
Tài liệu tự học Toán lớp 11: Hàm số lượng giác và phương trình lượng giác - Trần Quốc Nghĩa
107 p |
26
|
6
-
Bài giảng Hình học lớp 12 - Chương 3: Phương pháp tọa độ trong không gian (Bài 2: Phương trình mặt phẳng – Tiết 34)
15 p |
2
|
2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn
