Chương 2: MA TRẬN VÀ HỆ PHƯƠNG TRÌNH TUYẾN TÍNH
lượt xem 66
download
Download
Vui lòng tải xuống để xem tài liệu đầy đủ
2.1 Một số khái niệm về ma trận 2.1.1. Định nghĩa: Một ma trận A loại mxn trong trường K là một bảng chữ nhật gồm mxn phần tử trong K được viết thành m dòng và n cột như sau:
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Chương 2: MA TRẬN VÀ HỆ PHƯƠNG TRÌNH TUYẾN TÍNH
- Chương 2: MA TRẬN VÀ HỆ PHƯƠNG TRÌNH TUYẾN TÍNH 2.1 Một số khái niệm về ma trận 2.1.1. Định nghĩa: Một ma trận A loại mxn trong tr ường K là một bảng chữ nhật gồm mxn phần tử trong K được viết thành m dòng và n c ột như sau: A= trong đó aij K là phần tử ở vị trí dòng thứ i và cột thứ j của A Ma trận A có thể viết gọn là A = (aij) - Ký hiệu (K) là tập hợp tất cả các ma trận loại mxn trên K - Một ma trận trên K thường được ký hiệu bởi những chữ in hoa (ví dụ: - A, B, C,....) Ký hiệu A (K) cho biết A là một ma trận loại mxn trên K - Ký hiệu [A]ij (hoặc aij) được hiểu là phần tử nằm ở vị trí (i, j) của A -
- Ví dụ: A= thì , , , .... Nếu m = n thì ta nói A là m ột ma trận vuông cấp n trên K. Tập hợp - tất cả các ma trận vuông cấp n trên trường K ký hiệu (K) Ví dụ: A= + Các phần tử trên đường chéo chính 2, -1, i + Các phần tử trên đường chéo phụ 2, -1, 4 2.1.2. Định nghĩa: (K) là ma trận không (hay ma trận zero), ký hiệu A = Ta nói A (hay đôi khi là 0 nếu không có sự nhầm lẫn), nếu , i,j Ví dụ: =
- 2.2 Các phép toán trên ma tr ận Định nghĩa: 2.2.1. (K) .Ta nói A = B nếu Cho A, B , i,j Ví dụ: A= ,B= thì A = B p = 2, q = 4, 1 = n. Định nghĩa: 2.2.2. (K). Ta gọi B (K) là chuyển vị của A (ký hiệu B = Cho A AT), nếu [B]ij = [A]ji, i, j Ví dụ: A= thì AT = Tính chất: (i) (AT)T = A; (ii) AT = BT A = B
- Định nghĩa: 2.2.3. Cho A Mmxn(K) và c K. Tích của c với A (ký hiệu cA) l à một ma trận được định nghĩa bởi [cA]ij = c[A]ij, i, j Nếu c = -1 thì ta ký hiệu (-1)A = - A và gọi là ma trận đối của A Ví dụ: 2 Tính chất: Cho A Mmxn(K) và c, d K. Khi đó: (i) (c.d).A = c.(d.A), suy ra (-c)A = c(-A); (ii) (c.A)T = c.AT. Định nghĩa: 2.2.4. Cho A, B Mmxn(K). Tổng của A và B (ký hiệu: A + B) là một ma trận thuộc Mmxn(K) được định nghĩa bởi (A + B)ij = Aij + Bij, i,j. Ví dụ:
- Tính chất: Cho A, B, C Mmxn(K) và c,d K. Khi đó (i) A + B = B + A; (ii) (A + B) + C = A + (B + C); (iii) 0 + A = A + 0 = A; (iv) A + (-A) = (-A) + A = 0; (v) (A + B)T = AT + BT; (vi) c(A + B) =cA +cB; (vii) (c + d)A = cA + dA Định nghĩa 2.2.5. Cho A Mmxn(K) và B Mnxp(K). Tích c ủa A và B (ký hiệu AB) là một ma trận thuộc Mmxp(K) được định nghĩa bởi [AB]ij = ([A]i1[B]1j + [A]i2[B]2j + … + [A]in[B]nj) = Ví dụ
- , AB = Chú ý: Tích của hai ma trận chỉ thực hiện đ ược khi số cột của ma trận thứ - nhất bằng số dòng của ma trận thứ hai. AB và BA cùng tồn tại khi A và B là hai ma trận vuông cùng cấp và - AB ¹ BA AB = 0 có thể xảy ra A - 0 và B 0 Ví dụ: A= ,B= , AB = Tính chất: Cho A, A' Mm x n(K) , B, B’ Mn x p (K), C Mp x q(K) và c K . Khi đó: (i) (AB)C = A(BC); (ii) A0nxp = 0mxp; 0rxmA = 0rxn; (iii) A(B B’) = AB AB’ ; (A A’)B = AB A’B;
- (iv) (AB)T = ATBT; (v) c(AB) = A(cB) = (cA)B. 2.3 Các loại ma trận vuông đặc biệt Định nghĩa 2.3.1. Mn(K) là ma trận đường chéo cấp n nếu [A]ij = 0, Ta nói A i j, (nghĩa là ma trận vuông có tất cả phần tử bên ngoài đường chéo chính đều bằng 0) Ví dụ: A= Định nghĩa 2.3.2. Một ma trận đường chéo cấp n trên K với tất cả các phần tử trên đường chéo đều bằng nhau được gọi là ma trận vô hướng cấp n trên K. Một ma trận vô hướng cấp n với phần tử 1 trên đường chéo chính được gọi là ma trận đơn vị cấp n trên K Ký hiệu: In ma trận đơn vị cấp n trên K có dạng.
- In = Định nghĩa: 2.3.3. Ta nói B Mn (K) là ma trận tam giác trên nếu [B]ij = 0, i>j (nghĩa là ma trận vuông có mọi phần tử ở bên dưới đường chéo chính đều bằng không) Định nghĩa: 2.3.4. Mn (K) là ma trận tam giác dưới nếu [C]ij = 0, i< j (nghĩa Ta nói C là ma trận vuông có các phần tử ở bên trên đường chéo chính đều bằng 0) Định nghĩa 2.3.5. Một ma trận tam giác trên hoặc tam giác dưới gọi chung là ma trận tam giác. Định nghĩa: 2.3.6. Ta nói A Mn (K) là một ma trận phản đối xứng (hay phản xứng) nếu AT = - A, nghĩa là [A]ij = - [A]ji, i,j Nhận xét: Tất cả các phần tử trên đường chéo chính của ma trận phản ứng đều = 0 (vì [A]ii = -[A]ii => [A]ii = 0) Ví dụ:
- A= 2.4 Lũy thừa ma trận Định nghĩa: 2.4.1. Mn(K) . Ta định nghĩa luỹ thừa của A một cách quy nạp nh ư Cho A sau: A0 = In, A1 = A, A2 = A.A, ... , Ak + 1 = Ak.A, kN Ví dụ: A= => A2 = và A3= Như vậy với A 0 nhưng A3 = 0 Với A Mn(K), có thể xảy ra trường hợp A 0 nhưng Ak = 0 Một ma trận A Mn(K) thoả điều kiện Ak = 0 với một k N nào đó được gọi là ma trận lũy linh. Tính chất: 2.4.2. (i) (0n)k = 0n, k N
- (ii) (In)k = In, k N (iii) Ar + s = Ar.As, A Mn(K), r,s N (iv) Ars = (Ar)s, A Mn(K), r, s N
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Bài tập đại số tuyến tính - dành cho hệ VB2 và VLVH - ThS. Trần Thị Tuấn Anh
4 p |
267
|
36
-
Toán 2 - ĐH Tôn Đức Thắng
11 p |
275
|
29
-
Chương 2: MA TRẬN VÀ HỆ PHƯƠNG TRÌNH TUYẾN TÍNH (TT)
12 p |
178
|
20
-
Bài giảng Đại số tuyến tính: Chương 2 - Lê Văn Luyện
39 p |
98
|
9
-
Giáo trình Toán cao cấp 2 - PGS. TS Phạm Ngọc Anh, PGS. TS Lê Bá Long
237 p |
99
|
9
-
Bài giảng Toán rời rạc: Chương 2 - Quan hệ
9 p |
162
|
8
-
Bài tập Đại số tuyến tính - Chương 2
6 p |
97
|
6
-
Giáo trình Đại số tuyến tính: Phần 2 - TS. Nguyễn Duy Thuận (chủ biên)
204 p |
37
|
5
-
Bài giảng Đại số C - Chương 2: Định thức và hệ phương trình đại số tuyến tính
45 p |
70
|
4
-
Bài giảng Toán tài chính - Chương 5a: Đại số tuyến tính và ứng dụng
106 p |
114
|
4
-
Bài giảng chương 2: Giải hệ phương trình tuyến tính - ThS. Hồ Thị Bạch Phương
41 p |
17
|
4
-
Bài giảng Đại số tuyến tính: Chương 2.5 - TS. Nguyễn Hải Sơn
52 p |
37
|
3
-
Bài giảng Phương pháp số: Chương 2 - TS. Lê Thanh Long
42 p |
7
|
2
-
Bài giảng Đại số tuyến tính - Chương 2: Hệ phương trình tuyến tính
18 p |
13
|
2
-
Bài giảng Đại số tuyến tính: Chương 2 - PGS. TS. Nguyễn Duy Tân
99 p |
7
|
2
-
Bài giảng môn Đại số tuyến tính: Chương 2
41 p |
2
|
1
-
Bài giảng Đại số tuyến tính: Chương 2 - ĐH Khoa Học Tự Nhiên Tp. Hồ Chí Minh
41 p |
4
|
0
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn
