
Ôn thi cao hoc đại số tuyến tính bài 12 - PGS TS Vinh Quang
lượt xem 490
download

"Ôn thi cao hoc đại số tuyến tính bài 12 - PGS TS Vinh Quang " Trong các kỳ thi tuyển sinh sau đại học, đại số tuyến tính là môn cơ bản là môn bắc buộc đối với các thí sinh thi vào sau đại học vào cách ngành toán, cụ thể là chuyên ngành đại số, hình học, giải tích. Các bài viết nhằm cung cấp cho bạn đọc một cách hệ thống và chọn lọc những kiến thức và kỹ năng cơ bản với mục đích giúp người đọc chủ động và tích cực hơn trong...
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Ôn thi cao hoc đại số tuyến tính bài 12 - PGS TS Vinh Quang
- Đ I S CƠ B N (ÔN THI TH C SĨ TOÁN H C) Bài 12. Không gian vectơ con PGS TS M Vinh Quang Ngày 28 tháng 2 năm 2006 1 Đ nh nghĩa và các ví d 1.1 Đ nh nghĩa Cho V là không gian vectơ. T p con U (khác r ng) c a V g i là không gian vectơ con c a V n u các phép toán c ng và phép toán nhân vô hư ng c a V thu h p trên U là các phép toán trong U , đ ng th i U cùng v i các phép toán đó làm thành m t không gian vectơ. T đ nh nghĩa không gian vectơ con, ta d dàng có đư c k t qu dư i đây. 1.2 Tiêu chu n c a không gian vectơ con T p con U (khác r ng) c a không gian vectơ V là không gian vectơ con c a V khi và ch khi: 1. V i m i α, β ∈ U , ta có: α + β ∈ U 2. V i m i α ∈ U , ta có −α ∈ U Như v y, vi c ki m tra t p con U c a V có là không gian vectơ con hay không khá đơn gi n: ta ch vi c ki m tra xem U có các tính ch t 1 và 2 hay không. B n đ c có th v n d ng tiêu chu n trên đ t ki m tra các ví d sau. 1.3 Các ví d 1.3.1 Ví d 1 T p {0} ch g m vectơ-không là không gian vectơ con c a V . T p V cũng là không gian vectơ con c a V . Các không gian con {0}, V g i là các không gian vectơ con t m thư ng c a V . 1.3.2 ví d 2 A = {(x1 , . . . , xn ) | x1 + x2 + · · · + xn = 0} ⊂ Rn là không gian con c a Rn . B = {(x1 , . . . , xn ) | x1 + x2 + · · · + xn ≥ 0} ⊂ Rn không là không gian con c a Rn , có th d dàng ki m tra B không có tính ch t 2. 1
- 1.3.3 Ví d 3 T p Rn [x] g m đa th c không và các đa th c h s th c có b c ≤ n là không gian con c a R[x]. T p các đa th c h s th c b c n không là không gian con c a R[x] vì c 2 đi u ki n 1 và 2 đ u không đư c th a mãn. 1.3.4 Ví d 4 T p Tn (R) các ma tr n tam giác trên c p n là không gian con c a không gian Mn (R) các ma tr n vuông c p n. 1.4 S chi u c a không gian con Liên quan đ n s chi u c a không gian vectơ con, ta có đ nh lý sau: N u U là không gian vectơ con c a V thì dim U ≤ dim V và dim U = dim V ⇔ U = V . Ch ng minh Gi s α1 , . . . , αm là cơ s c a U ; β1 , . . . , βn là cơ s c a V . Vì U ⊂ V nên h vectơ (α) bi u th tuy n tính đư c qua h (β). Do đó theo b đ cơ b n, ta có m ≤ n, t c là dim U ≤ dim V . N u dim U = dim V = n thì α1 , . . . , αn là h đ c l p tuy n tính có đúng n = dim V vectơ nên α1 , . . . , αn là cơ s c a V . Do đó U = V 2 M t s các không gian con 2.1 Không gian giao và không gian t ng Dùng tiêu chu n không gian vectơ con, ta có th d dàng ch ng minh đư c các k t qu sau: • N u A, B là các không gian vectơ con c a V thì A ∩ B là không gian vectơ con c a V . T ng quát, giao c a m t h tùy ý các không gian vectơ con c a V là không gian vectơ con c a V . • Cho A, B là các không gian vectơ con c a V , ta đ nh nghĩa: A + B := {x = α + β | α ∈ A, β ∈ B} ⊂ V (x ∈ A + B ⇔ x = α + β v i α ∈ A, β ∈ B) Khi đó, A + B là không gian vectơ con c a V g i là không gian t ng c a các không gian con A và B. Liên quan đ n s chi u c a không gian giao và không gian t ng ta có đ nh lý sau. Đ nh lý. N u A, B là các không gian con c a không gian vectơ V (h u h n chi u) thì: dim(A + B) = dim A + dim B − dim(A + B) Ch ng minh. Gi s α1 , . . . , αr là cơ s c a A ∩ B (dim A ∩ B = r). Vì α1 , . . . , αr là h vectơ đ c l p tuy n tính c a A nên ta có th b sung thêm các véctơ đ đư c h vectơ α1 , . . . , αr , β1 , . . . , βs là cơ s c a A (dim A = r + s). Tương t c, ta có th b sung thêm các vectơ đ đư c h vectơ α1 , . . . , αr , γ1 , . . . , γt là cơ s c a B (dim B = r + t). Ta ch ng minh h vectơ α1 , . . . , αr , β1 , . . . , βs , γ1 , . . . , γt là cơ s c a A + B. Th t v y: 2
- • α1 , . . . , αr , β1 , . . . , βs , γ1 , . . . , γt là h sinh vì: v i m i x ∈ A + B, ta có x = y + z v i y ∈ A, z ∈ B. Vì y ∈ A nên y = a1 α1 + · · · + ar αr + b1 β1 + · · · + bs βs Vì z ∈ B nên z = a1 α1 + · · · + ar αr + c1 γ1 + · · · + ct γt trong đó ai , ai , bj , ck ∈ R. Khi đó, x = (a1 + a1 )α1 + · · · + (ar + ar )αr + b1 β1 + · · · + bs βs + c1 γ1 + ct γt V y h trên là h sinh c a A + B. • α1 , . . . , αr , β1 , . . . , βs , γ1 , . . . , γt là h vectơ đ c l p tuy n tính. Gi s a1 α1 + · · · + ar αr + b1 β1 + · · · + bs βs + c1 γ1 + · · · + ct γt = 0 (1) trong đó ai , bj , ck ∈ R. Xét vectơ x = a1 α1 + · · · + ar αr + b1 β1 + · · · + bs βs = −c1 γ1 − · · · − ct γt (2) Vì α1 , . . . , αr , β1 , . . . , βs là cơ s c a A nên x ∈ A. M t khác, γ1 , . . . , γt ∈ B nên x ∈ B. Do đó x ∈ A ∩ B. B i v y, x = a1 α1 + · · · + ar αr (3) v i ai ∈ R. T (2) và (3) ta có: (a1 − a1 )α1 + · · · + (ar − ar )αr + b1 β1 + · · · + bs βs = 0 Vì α1 , . . . , αr , β1 , . . . , βs đ c l p tuy n tính nên b1 = b2 = · · · = bs = 0. Thay vào (1) ta có: a1 α1 + · · · + ar αr + c1 γ1 + · · · + ct γt = 0 Do đó, a1 = · · · = ar = c1 = · · · = ct = 0 V y h trên đ c l p tuy n tính Như v y, ta đã ch ng minh đư c h vectơ α1 , . . . , αr , β1 , . . . , βs , γ1 , . . . , γt là cơ s c a A+B. Do đó: dim(A + B) = r + s + t = (r + s) + (r + t) − r = dim A + dim B − dim(A ∩ B) 2.2 Không gian con sinh b i m t h vectơ Cho V là không gian vectơ, α1 , . . . , αn là h vectơ c a V . Ta đ nh nghĩa: α1 , . . . , αn := {x = a1 α1 + a2 α2 + · · · + an αn | ai ∈ R} ⊂ V (x ∈ V ⇔ T n t i ai ∈ R đ x = a1 α1 + · · · + an αn ) Dùng tiêu chu n không gian vectơ con, ta có ngay α1 , . . . , αn là không gian vectơ con c a V . Không gian con này g i là không gian con c a V sinh b i h vectơ α1 , α2 , . . . , αn (hay còn g i là bao tuy n tính c a h vectơ α1 , α2 , . . . , αn ). T đ nh nghĩa, ta có: α1 , . . . , αn chính là m t h sinh c a không gian vectơ con α1 , . . . , αn . B i v y, m i h con đ c l p tuy n tính t i đ i c a h α1 , . . . , αn đ u là h sinh, do đó là cơ s c a không gian vectơ con α1 , . . . , αn . 3
- 2.3 Không gian con các nghi m c a h phương trình tuy n tính thu n nh t Cho h phương trình tuy n tính thu n nh t m phương trình, n n. a11 x1 + a12 x2 + · · · + a1n xn = 0 . . (I) . a x + a x + ··· + a x = 0 m1 1 m2 2 mn n M i nghi m c a h (I) có th xem là m t vectơ trong không gian Rn . Dùng tiêu chu n không gian vectơ con có th d dàng ch ng minh t p nghi m N c a h phương trình tuy n tính thu n nh t (I) là không gian vectơ con c a Rn . Không gian con này g i là không gian con các nghi m c a h (I). N u ta ký hi u r = rank A thì s chi u c a không gian con các nghi m c a h (I): dim N = n − r. Cơ s c a không gian nghi m N c a h (I) ta g i là h nghi m cơ b n c a h (I). Đ tìm h nghi m cơ b n c a h (I) (cơ s c a không gian nghi m N ), ta làm như sau: • Gi i h phương trình (I), h có nghi m t ng quát ph thu c n − r tham s . • Gi s các tham s là xi1 , . . . , xin−r . Cho xi1 = 1, xi2 = 0, . . . , xin−r = 0, t c là (xi1 , xi2 , . . . , xin−r ) = (1, 0, . . . , 0). Tính các xi còn l i theo công th c nghi m t ng quát, ta s đư c m t nghi m c a h (I) ký hi u là α1 . • Tương t v i (xi1 , xi2 , xi3 , . . . , xin−r ) = (0, 1, 0, . . . , 0) . . . (xi1 , xi2 , . . . , xin−r ) = (0, 0, . . . , 1), ta s thu đư c các nghi m α2 , . . . , αn−r . Khi đó, α1 , α2 , . . . , αn−r là cơ s c a N (là h nghi m cơ b n c a h (I)). B n đ c s th y rõ quá trình trên thông qua ví d c th sau: Ví d . Tìm cơ s c a không gian nghi m N c a h phương trình tuy n tính thu n nh t x1 + 2x2 + 2x4 + x5 = 0 2x1 + 4x2 + x3 + 3x4 = 0 3x1 + 6x2 + 2x3 + 3x4 + x5 = 0 x1 + 2x2 + x3 + x5 = 0 Gi i. Đ u tiên ta gi i h đã cho. Bi n đ i ma tr n các h s m ng: r 1 2 0 2 1 0 1 2 0 2 1 0 2 4 1 3 0 0 0 0 1 −1 −2 0 A= 3 6 2 3 1 0 −→ 0 0 2 −3 −2 0 1 2 1 0 1 0 0 0 1 −2 0 0 ∗ 1 2 0 2 1 0 1 2 0 2 1 0 0 0 1 −1 −2 0 ∗ −→ 0 0 1 −1∗ −2 0 −→ 0 0 0 −1 0 0 0 −1 2 0 2 0 0 0 0 −1 2 0 0 0 0 0 0 0 rank A = 3, h có vô s nghi m ph thu c hai tham s là x2 , x5 . Ta có: x4 = 2x5 x3 = x4 + 2x5 = 4x5 x1 = −2x2 − 2x4 − x5 = −2x2 − 5x5 4
- V y nghi m t ng quát c a h là: x1 = −2x2 − 5x5 x3 = 4x5 x4 = 2x5 x2 , x5 tùy ý Ch n x2 = 1, x5 = 0, ta s có x1 = −2, x3 = 0, x4 = 0, ta đư c vectơ α1 = (−2, 1, 0, 0, 0). Ch n x2 = 0, x5 = 1, ta s có x1 = −5, x3 = 4, x4 = 2, ta đư c vectơ α2 = (−5, 0, 4, 2, 1). V y cơ s c a không gian nghi m N c a h trên là h {α1 , α2 }, N = α1 , α2 , dim N = 2. 2.4 M t vài nh n xét Cho A và B là các không gian vectơ con c a V . N u A = α1 , . . . , αm , B = β1 , . . . , βn thì A + B = α1 , . . . , αm , β1 , . . . , βn . Th t v y, vì A ⊂ A + B, B ⊂ A + B nên các vectơ αi , βj ∈ A + B, và do đó ta có α1 , . . . , αm , β1 , . . . , βn ⊂ A + B Ngư c l i, n u x ∈ A + B thì x = y + z trong đó y ∈ A, z ∈ B. Ta có y ∈ A nên y = a1 α1 + · · · + am αm , đ ng th i z ∈ B nên z = b1 β1 + · · · + bn βn , v i ai , bj ∈ R. B i v y, x = y + z = a1 α1 + · · · + am αm + b1 β1 + · · · + bn βn ∈ A + B. T nh n xét trên ta có chú ý sau: N u A = α1 , . . . , αm , B = β1 , . . . , βn thì α1 , . . . , αm , β1 , . . . , βn là m t h sinh c a A + B và do đó h con đ c l p tuy n tính t i đ i c a h vectơ α1 , . . . , αm , β1 , . . . , βn là cơ s c a A+B. * N u A là không gian vectơ con c a không gian vectơ h u h n chi u V thì A luôn có th vi t dư i d ng A = α1 , . . . , αm . Th t v y, gi s α1 , . . . , αm là m t cơ s (ho c h sinh) b t kỳ c a A thì ta có ngay A = α1 , . . . , αm . * N u A là không gian vectơ con c a không gian Rn thì A có th xem như không gian nghi m c a h phương trình tuy n tính thu n nh t có n n nào đó. Th t v y, gi s α1 , . . . , αm là cơ s c a A thì A = α1 , . . . , αm . Vectơ x = (a1 , . . . , an ) ∈ A khi và ch khi phương trình vectơ x = x1 α1 + · · · + xm αm (xi ∈ R) có nghi m, khi và ch khi x = (a1 , . . . , an ) là nghi m c a h phương trình tuy n tính thu n nh t nào đó. B n đ c có th th y rõ đi u này qua ví d sau. Ví d . Trong R4 cho các vectơ α1 = (1, −1, 0, 1), α2 = (1, 1, 1, 0), α3 = (2, 0, 1, 1) và cho không gian con A = α1 , α2 , α3 . Tìm m t đi u ki n c n và đ đ vectơ x = (a1 , a2 , a3 , a4 ) ∈ A. Gi i. Vectơ x ∈ A khi và ch khi phương trình (a1 , a2 , a3 , a4 ) = x1 α1 + x2 α2 + x3 α3 có nghi m, nghĩa là h phương trình 1 1 2 a1 −1 1 0 a2 0 1 1 a3 (∗) 1 0 1 a4 có nghi m. Bi n đ i h (*): 5
- 1 1 2 a1 1 1 2 a1 0 2 2 a1 + a2 0 2 2 a3 (∗) −→ −→ 0 1 1 a3 0 0 0 a1 + a2 − 2a3 0 −1 −1 −a1 + a4 0 0 0 −a1 + a3 + a4 H (*) có nghi m khi và ch khi a1 + a2 − 2a3 = 0 −a1 + a3 + a4 = 0 a1 + a2 − 2a3 = 0 Do đó, đi u ki n c n và đ đ vectơ x = (a1 , a2 , a3 , a4 ) ∈ A là: −a1 + a3 + a4 = 0 Và do đó, A chính là không gian nghi m c a h phương trình: x1 + x2 − 2x3 = 0 −x1 + x3 + x4 = 0 6
- Bài t p 13. Cho A, B là các không gian vectơ con c a không gian vectơ V . Ch ng minh r ng A ∪ B là không gian vectơ con c a V khi và ch khi A ⊂ B ho c B ⊂ A. 14. Cho V là không gian vectơ và A là không gian vectơ con c a V . Ch ng minh r ng t n t i không gian vectơ con B c a V sao cho A + B = V , A ∩ B = {0}. 15. Trong R4 cho các vectơ: u1 = (1, 1, 0, 0), u2 = (1, 1, 1, 1), u3 = (0, −1, 0, 1), u4 = (1, 2, −1, −2) và E = u1 , u2 , u3 , u4 . (a) Tìm m t cơ s và s chi u c a E. (b) Tìm m t đi u ki n c n và đ đ vectơ x = (a1 , a2 , a3 , a4 ) ∈ E. (c) Cho vectơ v1 = (1, a3 , a, 1), v2 = (1, b, b3 , 1), v3 = (ab + 1, ab, 0, 1). Tìm a, b đ v1 , v2 , v3 là cơ s c a E. 16. Trong R4 cho các không gian con: U = (2, 0, 1, 1), (1, 1, 1, 1), (0, −2, −1, −1) x1 − x3 − x4 = 0 V = (x1 , x2 , x3 , x4 ) x2 − x3 + x4 = 0 (a) Tìm cơ s , s chi u c a các không gian vectơ U , V , U + V . (b) Tìm cơ s , s chi u c a không gian vectơ con U ∩ V . 17. Cho U là không gian vectơ con c a V . Bi t r ng dim U = m < dim V = n. Ch ng minh: (a) Có cơ s c a V không ch a vectơ nào c a U . (b) Có cơ s c a V ch a đúng k vectơ c a U (0 ≤ k ≤ m). 18. Cho A, B là các ma tr n c p m × n (A, B ∈ Mm×n (R)). Ch ng minh: rank(A + B) ≤ rank A + rank B 7

CÓ THỂ BẠN MUỐN DOWNLOAD
-
TOÁN CAO CẤP THI CAO HỌC KHỐI NGÀNH KINH TẾ - đề 3
8 p |
1053 |
406
-
TOÁN CAO CẤP THI CAO HỌC KHỐI NGÀNH KINH TẾ
6 p |
773 |
320
-
Tài liệu ôn thi cao học năm 2005 - Môn: Giải tích cơ bản
9 p |
316 |
295
-
Tổng hợp đề thi cao học
14 p |
615 |
258
-
TOÁN CAO CẤP THI CAO HỌC KHỐI NGÀNH KINH TẾ ĐỀ 1
7 p |
551 |
218
-
Tài liệu ôn thi cao học 2005 - Môn: Giải tích cơ bản
15 p |
355 |
180
-
TOÁN CAO CẤP THI CAO HỌC KHỐI NGÀNH KINH TẾ đề 4
7 p |
488 |
167
-
Đề cương môn thi cơ sở Tuyển sinh Sau đại học năm 2014 môn Toán cao cấp 1 - ĐH Bách Khoa
3 p |
789 |
98
-
Đề thi cao học Vinh
15 p |
417 |
86
-
Độ đo-ôn thi cao học
6 p |
167 |
63
-
Đáp án đề thi tuyển sinh cao học năm 2013 môn thi: Toán kinh tế - Đại học Kinh tế Hồ Chí Minh (Mã đề 118)
9 p |
839 |
54
-
Tài liệu hóa học đại cương
9 p |
381 |
39
-
Đề thi cao học môn Toán kinh tế qua các năm của trường ĐH Ngoại Thương và ĐH Kinh tế Quốc dân
10 p |
263 |
33
-
Ngành giáo dục tiểu học - Ôn thi tốt nghiệp Đại học phần toán cao cấp: Phần 2
103 p |
277 |
32
-
Đề cương thi đầu vào cao học môn: Khoa học môi trường - Trường Đại học Khoa học Tự Nhiên
13 p |
188 |
17
-
Đê cương chi tiết môn thi cơ sở môn Kỹ thuật môi trường đại cương (Dùng cho tuyển sinh trình độ Thạc sỹ) - ĐH Quốc gia TP Hồ Chí Minh
4 p |
224 |
13
-
Chuyên đề ôn thi Cao học 2012 Hàm số và cực trị - TS. Nguyễn Hữu Thọ
8 p |
115 |
7
-
Đề cương ôn tập tuyển sinh sau đại học môn Sinh thái học
5 p |
50 |
4


Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn
