
Không gian vectơ Rn
-
Bài giảng "Toán cao cấp A1 – Chương 3: Không gian Vectơ" cung cấp đến quý độc giả các kiến thức về không gian vectơ con; sự độc lập tuyến tính phụ thuộc tuyến tính; hệ vectơ trong Rn; cơ sở, số chiều của kgvt tọa độ của vectơ.
38p
khoactu
09-07-2020
150
12
Download
-
"Bài giảng Toán cho các nhà kinh tế 1 - Bài 2: Các mối liên hệ tuyến tính trong không gian vectơ n chiều–cơ sở của không gian Rn" trình bày khái niệm tổ hợp tuyến tính và phép biểu diễn tuyến tính; sự phụ thuộc tuyến tính; cơ sở của không gian vectơ n chiều.
32p
nguathienthan9
11-12-2020
47
3
Download
-
"Bài giảng Toán cho các nhà kinh tế 1 - Bài 2: Các mối liên hệ tuyến tính trong không gian vectơ N chiều – cơ sở của không gian Rn" trình bày khái niệm tổ hợp tuyến tính và phép biểu diễn tuyến tính; sự phụ thuộc tuyến tính; cơ sở của không gian vectơ n chiều.
12p
gaocaolon10
27-02-2021
60
2
Download
-
Luận văn trình bày sơ lược về một số vẫn đề có liên quan như: Không gian vectơ Euclid Rn, P0 - hàm, P- hàm, P- hàm đều, hàm đơn điệu, hàm đơn điệu mạnh, P0 - ma trận, P0 - ma trận; giới thiệu bài toán đặt không chỉnh và phương pháp hiệu chính Tikhonov cho bài toán cực trị tổng quát.... Mời các bạn cùng tham khảo.
58p
capheviahe26
02-02-2021
50
3
Download
-
Bài giảng "Toán cao cấp - Chương 3: Không gian vectơ" cung cấp cho người học các kiến thức: Subspaces of Rn, spanning sets, independence, bases of vector spaces, column space and row space of a matrix, dimensions. Mời các bạn cung tham khảo nội dung chi tiết.
18p
abcxyz123_08
11-04-2020
122
6
Download
-
Bài giảng Không gian vectơ Rn cung cấp cho người học các kiến thức: Không gian Rn, tính chất, tích vô hướng, góc và khoảng cách, tổ hợp tuyến tính, biểu thị tuyến tính, phụ thuộc tuyến tính và độc lập tuyến tính,... Mời các bạn cùng tham khảo.
18p
tieu_vu06
09-06-2018
68
4
Download
-
Bài giảng Toán A2 cung cấp cho người học những kiến thức về số phức, ma trận và định thức, hệ phương trình tuyến tính, không gian vectơ Rn , chéo hóa ma trận, dạng toàn phương. Bài giảng gồm có 4 chương, mời các bạn cùng tham khảo.
4p
allbymyself_10
02-03-2016
75
4
Download
-
Chương 3 trình bày những kiến thức về không gian vector Rn. Chương này giúp người học nắm bắt được một số khái niệm cơ bản như không gian vector, không gian vector con, không gian sinh bởi tập hợp, độc lập tuyến tính và phụ thuộc tuyến tính; nắm bắt được các phép toán cơ sở, số chiều, hạng của hệ vector; biết được các phép toán về tọa độ vector, ma trận chuyển cơ sở. Mời các bạn cùng tham khảo.
19p
allbymyself_10
02-03-2016
90
6
Download
-
Chương 4 trình bày các kiên thức về không gian vectơ Rn. Các nội dung chính trong chương này gồm có: Một số khái niệm cơ bản; cơ sở, số chiều, hạng của hệ vectơ; tọa độ; tích vô hướng, cơ sở trực chuẩn;...và các nội dung chi tiết khác. Mời các bạn cùng tham khảo.
6p
allbymyself_10
02-03-2016
55
2
Download
-
Trong bài giảng này trình bày về không gian véctơ Rn với các nội dung như: không gian Rn, tính chất của không gian véctơ Rn, tích vô hướng, góc và khoảng cách, tổ hợp tuyến tính, biểu thị tuyến tính,... Mời các bạn cùng tham khảo.
18p
nganga_04
27-09-2015
180
14
Download
-
Cho (V, ) – KG Euclide. Với mỗi u V ta định nghĩa và ký hiệu độ dài (môđun) hay chuẩn của u: u : u, u Nếu u 1 thì u được gọi là vectơ đơn vị. Ví dụ 3: Trong Rn, u (u1 ,u 2 ,..., u n ) , ta có: 2 2 2 u u1 u 2 ... u 2 (u1 u 2 ... u 2 )1/2 2 n n Vậy S' {v1 , v 2 , v3} là hệ trực chuẩn hóa của hệ S....
4p
lqvang02
19-02-2013
156
20
Download
-
Véc tơ ngẫu nhiên 1. Phân phối đồng thời của các biến ngẫu nhiên Giả sử X1,X2,…,Xn là n biến ngẫu nhiên xác định trên cùng không gian xác suất ( , , P), nhận giá trị trong không gian đo (R, B(R). Định nghĩa 1.1. Ta gọi X = (X1, X2,…, Xn) là vectơ ngẫu nhiên n chiều với giá trị trong Rn. Định nghĩa 1.2. Với mỗi tập Bôren B con của Rn, P[ : X Bn, trong đó Bn là -đại số Bôren các tập B] được gọi là phân phối xác suất của vectơ ngẫu nhiên X= (X1, X2,…,...
7p
cnkbmt1
14-10-2011
846
45
Download
-
Hình học không gian về giải toán vectơ Trong toán học, một vectơ là một phần tử trong một không gian vectơ, được xác định bởi ba yếu tố: điểm đầu (hay điểm gốc), hướng (gồm phương và chiều) và độ lớn (hay độ dài). Vectơ hướng từ A đến B Ví dụ, đoạn thẳng AB có điểm gốc là A, hướng từ A đến B được gọi là một vectơ, kí hiệu là \overrightarrow{A B} hoặc \vec a, \vec b, \vec u, \vec v Trong giải tích, một vectơ trong không gian Euclid Rn là một bộ n số thực (x1,...
19p
trungtran2
08-08-2010
124
387
Download
-
Trong toán học, một vectơ là một phần tử trong một không gian vectơ, được xác định bởi ba yếu tố: điểm đầu (hay điểm gốc), hướng (gồm phương và chiều) và độ lớn (hay độ dài). Vectơ hướng từ A đến B Ví dụ, đoạn thẳng AB có điểm gốc là A, hướng từ A đến B được gọi là một vectơ, kí hiệu là hoặc , , , Trong giải tích, một vectơ trong không gian Euclid Rn là một bộ n số thực (x1, x2, ..., xn). Có thể hình dung một vectơ trong không gian Rn là đoạn...
4p
phungnhi2011
19-03-2010
460
82
Download
CHỦ ĐỀ BẠN MUỐN TÌM
